Water and carbon relations in the genus *Adesmia* (Papilionaceace) at different altitudes in the high north-central Chilean Andes

Relaciones hídricas y de carbono en el género *Adesmia* (Papilionaceae) a diferentes altitudes en los altos Andes del norte-centro de Chile

FERMIN RADA¹, FRANCISCO A. SQUEO², AURA AZOCAR¹ and HERNAN M. CABRERA³

¹Centro de Investigaciones Ecológicas de los Andes Tropicales (CIELAT), Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela
²Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, Chile
³Instituto de Biología, Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
E-mail: frada@ciens.ula.ve (¹), fsqueo@elqui.cic.userena.cl (²), hcabrera@ucv.cl (³)

ABSTRACT

The high north-central Chilean Andes present strong daily and seasonal temperature variations together with an extremely dry growing season, typical of mediterranean climates. *Adesmia* is highly diverse in terms of life-forms, and the most dominant plant genus in this region; therefore, it represents an opportunity to study plant responses to constraints imposed by water stress during the growing season. This paper characterizes variations in water relation parameters, which occur under low water availability conditions, and their effects on gas exchange characteristics in four *Adesmia* species with different life-forms and inhabiting different vegetation belts at different altitudes. Daily courses of gas exchange and water relations were performed on *A. hystrix* (3300 m), *A. aegiceras* (3300 and 3750 m), *A. echinus* (4200 m) and *A. subterranea* (3750 and 4200 m) in the growing season. Osmotic potential at full turgor and turgor loss and relative water content at turgor loss were also evaluated for each species. All *Adesmia* species show important stomatal control during most of the day as a response to low soil water availability. *A. aegiceras*, at both altitudes, exhibits maximum assimilation rates (6-8 μmol m⁻² s⁻¹) compared to the other three species (2-6 μmol m⁻² s⁻¹). Only *A. hystrix* at 3300 m and *A. aegiceras* at 3750 m lost turgor during the daily courses. Maximum CO₂ assimilation rates are low compared to other species from mid-latitude high mountains.

Key words: gas exchange, water stress, life-forms, desert mountains, *Adesmia*.

RESUMEN

Los altos Andes del Norte-Centro de Chile presentan fuertes variaciones diarias y estacionales de temperatura junto a una estación de crecimiento extremadamente seca, típica de climas mediterráneos. El género *Adesmia* es altamente diverso en términos de formas de vida y el más dominante entre las plantas de esta región, por lo tanto, representa una oportunidad para estudiar las respuestas de estas plantas a las restricciones ambientales impuestas por la baja disponibilidad de agua en el suelo. En este trabajo se caracterizan los cambios en los parámetros hídricos, que ocurren en condiciones de baja disponibilidad de agua, y su efecto sobre las características del intercambio de gases en cuatro especies de *Adesmia* con diferentes formas de vida y que habitan diferentes pisos de vegetación a diferentes altitudes. Se realizaron cursos diarios de intercambio de gases y relaciones hídricas en *A. hystrix* (3300 m), *A. aegiceras* (3300 y 3750 m), *A. echinus* (4200 m) y *A. subterranea* (3750 y 4200 m), durante el período de crecimiento. Además, en cada especie, se evaluaron el potencial osmótico a máximo turgor y en el punto de pérdida de turgor, así como el contenido relativo de agua en el punto de pérdida de turgor. Todas las especies de *Adesmia* mostraron un importante control estomático durante gran parte del día como respuesta a la baja disponibilidad de agua en el suelo. *A. aegiceras*, en ambas altitudes, exhibe las máximas tasas de asimilación de CO₂ (6-8 μmol m⁻² s⁻¹) en comparación a las otras tres especies (2-6 μmol m⁻² s⁻¹). Sólo *A. hystrix* a 3300 m y *A. aegiceras* a 3750 m perdieron turgor durante los cursos diarios. Las tasas máximas de asimilación son bajas si se comparan con otras especies de altas montañas de latitudes medias.

Palabras clave: intercambio de gases, estrés hídrico, formas de vida, montañas desérticas, *Adesmia*.
INTRODUCTION

Plants from high mountains are exposed to very unique environmental conditions, where water availability and low temperatures directly affect gas exchange characteristics, productivity, survival, and community structure (Schulze 1982, Schulze & Hall 1982, Kramer 1983, Sakai & Larcher 1987, Körner & Larcher 1988, Alberdi & Corcuera 1991, Jones 1986). Productivity of these ecosystems is probably limited more by water than any other environmental factor, while low temperature is most limiting to plant distribution (Parker 1963, Sarmiento 1986).

In contrast with high tropical mountains, where the temperature regime is characterized by large daily fluctuations without important seasonal variations (Azócar & Monasterio 1980), mid and high latitude mountains present strong daily and seasonal changes (Óquít & Martin 1986, Squeo et al. 1994). Besides these temporal extremes in temperature, plants in the north-central Chilean Andes with a mediterranean climate, are exposed to even harsher conditions due to an increasing water stress during the short growing season, while soil water stored during winter is being depleted.

In terms of general ecological characteristics, plant communities from high mountains have a particular physiognomy (Hedberg 1964, Coe 1967, Cuatrecasas 1968, Smith & Young 1987). With a few exceptions, high mountain vascular plants belong to four conspicuous growth forms which are used to define different vegetation belts: herbaceous, mostly perennial; cushions; subshrubs and shrubs (Villagrán et al. 1983, Monasterio 1986, Arroyo et al. 1988, Körner & Larcher 1988, Arroyo & Squeo 1990, Squeo et al. 1993). *Adesmia* (Papilionaceae) is the most dominant plant genus of the north-central Chilean Andes (Squeo et al. 1993, 1994). This genus represents an opportunity to study plant responses to environmental constraints since its species show all the life-forms described above and have a widespread distribution along the altitudinal gradient.

Studies on the ecophysiology of plants from high desert Chilean mountains are scarce. Squeo et al. (1996) describe cold resistance mechanisms in plants from this environment. This paper describes a first attempt to characterize carbon and water relations of four *Adesmia* species with different life-forms and inhabiting different vegetation belts at different altitudes.

MATERIALS AND METHODS

Study site and plant species

Four species of the genus *Adesmia* were chosen at Valle del Río Malo in the north-central Chilean Andes (Cordillera de Doña Ana, 29° 45' S, 69° 59' W) between 3300 and 4200 m. These high elevation mountains show an arid mediterranean climate with cold, wet winters and dry, warm summers. At 3750 m, the mean annual temperature is 4.3 °C. July is the coldest month (-1.8 °C), while January and February are the warmest months (9.9 °C) (Squeo et al. 1994). The annual precipitation of 242 mm falls mainly (97%) from May to October, mostly as snow.

There are three vegetation belts in the Cordillera Doña Ana (Squeo et al. 1993, 1994): subalpine (from 2700 to 3500 m) with shrubs between 0.5 to 1.5 m tall; low alpine (from 3500 to 4250 m) with subshrubs and cushion plants; and high alpine (from 4250 m to vegetation limit at 4450 m) with small rosettes. We selected three sites located in the subalpine belt (ca. 3300 m) and low alpine belt (ca. 3700 m and 4200 m). Vegetation cover at the subalpine belt was 40%, with shrubs (e.g., *Adesmia hystrix*, *Ephedra breana*), subshrubs (e.g. *Adesmia aegiceras*, *Viviania martifolia*), perennial herbs (e.g., *Astragalus cruckshanksii*, *Phacelia cumingii*) and annuals (e.g., *Viola chrysantha*) coexist. Vegetation cover at the low alpine belt were 27% (3750 m) and 12% (4200 m), with subshrubs (e.g., *Adesmia aegiceras*, *A. echinus*), cushion plants (e.g., *Calceolaria pinnifolia*, *Adesmia subterranea*) and perennial herbs (e.g., *Viola spp.*, *Chaetanthera* spp.) present.
The studies were performed using adult individuals of *A. hystrix* Phil. (3300 m), *A. aegiceras* Phil. (3300 and 3750 m), *A. echinus* K. Presl. (4200 m) and *A. subterranea* Clos (3750 and 4200 m) during February of 1991, the middle of the growing season, which extends from the end of November to early April (Arroyo et al. 1981, Squeo et al. 1994, 1996).

Gas exchange and water relation measurements

Diurnal courses of gas exchange and leaf water potential were carried out in two independent days for each species at each elevation, during the first two weeks of February 1991. A fully portable system, consisting of a leaf chamber with humidity, temperature and quantum sensors, an air supply unit and an infrared gas analyser unit, operating in the open mode was used to measure gas exchange in the field (LCA-2 system, ADC Ltd., United Kingdom). Gas exchange calculations were conducted according to von Caemmerer and Farquhar (1981). Fully expanded leaves (n=9 to 12) from three different individuals of the species studied were chosen for each measurement interval.

Diurnal courses of leaf water potential (Ψ_w) were carried out for each species and altitude at 2-hour intervals. Measurements were obtained from adult leaves (n= 4) with a pressure chamber (PMS Instrument Co., Corvallis, Oregon, USA). Water volume-turgor relations, for three different plants of each species and altitude, were measured by the pressure-volume method as described by Tyree and Hammel (1972) and Koide et al. (1991).

RESULTS

For the genus *Adesmia*, water stress is a major factor affecting plant response in terms of stomatal control and its effects on CO_2 assimilation rates (A) for the different life-forms studied. A representative daily cycle with the different ecophysiological parameters measured for the shrub *A. hystrix* (3300 m) is shown in figure 1. As Ψ_w decreases to a critical value, stomatal conductance (g_s) begins to decline, leading to a decrease in A as well. This process is illustrated in figure 1, where the decrease in A coincides with the decrease in g_s and Ψ_w.

Fig. 1: Diurnal courses of photosynthetically active radiation (PAR), leaf temperature, leaf water potential, stomatal conductance and net CO$_2$ exchange for *A. hystrix* at 3300 m. Vertical bars represent standard error.

Cursos diurnos de radiación fotosintéticamente activa (PAR), temperatura foliar, potencial hidráulico foliar, conductancia estomática e intercambio neto de CO$_2$ para *A. hystrix* a 3300 m. Las barras verticales representan el error estándar.
creased due to a greater air evaporative demand, leaf conductance \((g_c)\) also decreased. In general, maximum \(CO_2\) assimilation rates \((A_{max} = 2.4 \mu mol \text{m}^{-2} \text{s}^{-1})\) were obtained in the early morning and decreased during the rest of the day.

Compared to \(A. \text{hystrix}\), \(A. \text{aegiceras}\) showed a greater \(CO_2\) assimilation rate for both altitudes, 3300 m and 3750 m, with \(A_{max}\) close to 6.5 \(\mu mol \text{m}^{-2} \text{s}^{-1}\) (Fig. 2). \(A. \text{aegiceras}\) at 3300 m showed a unimodal curve, while at 3750 m the curve had a midday depression and the \(A_{max}\) occurred at midafternoon. Leaf conductance for plants at the lower altitude showed a slight decrease after midmorning, which did not affect the assimilation rate. Leaf conductance for plants at the higher altitude decreased considerably due to minimum \(\Psi_L\), which reached -4.07 MPa, below the turgor loss point, and which clearly affected \(CO_2\) assimilation. \(\Psi_L\) in \(A. \text{aegiceras}\) at 3300 m decreased to a minimum of -2.8 MPa at midday. This species showed the highest assimilation rates of the four species studied.

Similar to \(A. \text{hystrix}\) and \(A. \text{aegiceras}\) at 3750 m, \(A. \text{subterranea}\) at 3750 m also presented stomatal closure (decrease in \(g_c\)) towards midday hours (Fig. 3a). This stomatal closure allowed leaf water potential to be relatively constant, even showing a slight increase during midday. In the case of this species, stomatal closure seemed to slightly affect \(CO_2\) assimilation rate as it decreased throughout the day and it was only in the midafternoon that an increase in \(A\) was observed \((A_{max} = 2.3 \mu mol \text{m}^{-2} \text{s}^{-1})\), when stomatal conductance also increased (Fig. 3a). If we compare \(A. \text{subterranea}\) at this altitude with the same species at a higher altitude (4200 m, Fig. 3b), there

Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Altitude (masl)</th>
<th>TL</th>
<th>(g_c)</th>
<th>(E)</th>
<th>(A)</th>
<th>(A/E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A. \text{hystrix})</td>
<td>3300</td>
<td>26.5±1.0</td>
<td>37±12</td>
<td>1.29±.23</td>
<td>1.89±.50</td>
<td>0.91±.48</td>
</tr>
<tr>
<td>(A. \text{aegiceras})</td>
<td>3300</td>
<td>25.2±1.4</td>
<td>152±27</td>
<td>2.20±.26</td>
<td>5.10±1.07</td>
<td>1.50±.63</td>
</tr>
<tr>
<td>(A. \text{aegiceras})</td>
<td>3750</td>
<td>23.3±1.4</td>
<td>67±50</td>
<td>1.37±.25</td>
<td>3.70±.53</td>
<td>1.34±.52</td>
</tr>
<tr>
<td>(A. \text{subterranea})</td>
<td>3750</td>
<td>25.9±1.1</td>
<td>43±9</td>
<td>1.69±.16</td>
<td>1.55±.35</td>
<td>0.42±.26</td>
</tr>
<tr>
<td>(A. \text{subterranea})</td>
<td>4200</td>
<td>19.6±0.7</td>
<td>77±21</td>
<td>2.02±.36</td>
<td>1.35±.28</td>
<td>0.62±.33</td>
</tr>
<tr>
<td>(A. \text{echinus})</td>
<td>4200</td>
<td>19.7±0.8</td>
<td>50±16</td>
<td>1.50±.41</td>
<td>2.69±.65</td>
<td>1.33±.58</td>
</tr>
</tbody>
</table>
Fig. 2: Diurnal courses of photosynthetically active radiation (PAR), leaf temperature, leaf water potential, stomatal conductance and net CO₂ exchange for *A. aegiceras* at (a) 3300 m and (b) 3750 m. Vertical bars represent standard error.

Cursos diurnos de radiación fotosintéticamente activa (PAR), temperatura foliar, potencial hídrico foliar, conductancia estomática e intercambio neto de CO₂ para *A. aegiceras* a (a) 3300 m y (b) 3750 m. Las barras verticales representan el error estándar.
were few differences in the parameters measured. \(\Psi_L \) remained slightly more positive at the higher altitude. This may be explained by severe stomatal closure throughout the cycle. At this altitude, the highest stomatal conductance measured occurred in the early morning hours and then decreased the rest of the day, even though average leaf conductance was higher at this altitude.

The representative daily course for \(A. \) \textit{echinus}, at 4200 m (Fig. 4), showed a similar pattern compared to \(A. \) \textit{subterranea} at the same altitude. \(\Psi_L \) were relatively high compared to \(A. \) \textit{hystrix} and \(A. \) \textit{aegiceras}, with a minimum of -2.6 MPa at midmorning and remaining more or less constant close to -2.0 MPa the rest of the day. Leaf conductance showed its maximum in the early morning (76 mmol m\(^{-2}\) s\(^{-1}\)), decreased until the early afternoon and then remained relatively constant close to 50 mmol m\(^{-2}\) s\(^{-1}\) the rest of the day (Fig. 4). This low stomatal conductance also resulted in lower \(\text{CO}_2 \) assimilation rates for this species (\(A = 3.5 \mu\text{mol m}^{-2}\text{s}^{-1} \)) compared with \(A. \) \textit{aegiceras} (Fig. 2), species with a similar life-form.

Mean values for gas exchange parameters resulting from all the daily courses carried out for each species and altitude exhibited different response patterns (Table 1). In terms of stomatal conductance, \(A. \) \textit{hystrix} and \(A. \) \textit{aegiceras}, both species growing at 3300 m, showed the lowest and highest \(g_s \) values, respectively. As expected, transpiration followed \(g_s \) closely (Table 1). In average, the highest \(\text{CO}_2 \) assimilation rates were found in \(A. \) \textit{aegiceras}, with rates of 5.1 and 3.7 \(\mu\text{mol m}^{-2}\text{s}^{-1} \) at 3300 and 3750 m, respectively. Due to this high \(A \) and low \(g_s \), which, in turn, decreased the transpiration rate, \(A. \) \textit{aegiceras} at both altitudes showed the highest average water use efficiency. Lowest average water use efficiencies were found in \(A. \) \textit{subterranea} at 3750 and 4200 m due to low \(\text{CO}_2 \) assimilation rates throughout the daily cycles.

Comparing minimum leaf water potential (\(\Psi_L^{\text{min}} \)) with osmotic potential at turgor loss (\(\Psi_{\text{p}}^{0} \), the shrub \(A. \) \textit{hystrix} at 3300 m and \(A. \) \textit{aegiceras} at 3750 m exhibited an important turgor loss during the daily courses (Table 2). \(A. \) \textit{subterranea} at 3750 m also showed turgor loss during midmorning, but a fast reduction in stomatal conductance between midmorning and midday resulted in a recovery of leaf water potential (compare Table 2 with Fig. 3a). In contrast, \(\Psi_L^{\text{min}} \) of \(A. \) \textit{subterranea} at 4200 m was 0.5 MPa above \(\Psi_{\text{p}}^{0} \), which indicates that at this altitude turgor was maintained throughout the day. \(A. \) \textit{aegiceras} at the lower altitude

<table>
<thead>
<tr>
<th>Species</th>
<th>Altitude (m)</th>
<th>(\Psi_L) (MPa)</th>
<th>(\Psi_L^{\text{min}}) (MPa)</th>
<th>(\Psi_{\text{p}}^{100}) (MPa)</th>
<th>(\Psi_{\text{p}}^{0}) (MPa)</th>
<th>RWC(^0) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A.) \textit{hystrix}</td>
<td>3300</td>
<td>-3.46±1.3</td>
<td>-4.00</td>
<td>-1.89±0.19</td>
<td>-3.20±0.21</td>
<td>75±2</td>
</tr>
<tr>
<td>(A.) \textit{aegiceras}</td>
<td>3300</td>
<td>-2.45±1.7</td>
<td>-3.20</td>
<td>-1.96±0.42</td>
<td>-3.26±0.34</td>
<td>69±3</td>
</tr>
<tr>
<td>(A.) \textit{aegiceras}</td>
<td>3750</td>
<td>-2.72±1.7</td>
<td>-4.07</td>
<td>-2.25±0.17</td>
<td>-3.30±0.25</td>
<td>74±3</td>
</tr>
<tr>
<td>(A.) \textit{subterranea}</td>
<td>3750</td>
<td>-2.35±1.4</td>
<td>-2.87</td>
<td>-1.87±0.11</td>
<td>-2.70±0.27</td>
<td>75±4</td>
</tr>
<tr>
<td>(A.) \textit{subterranea}</td>
<td>4200</td>
<td>-2.08±1.1</td>
<td>-2.20</td>
<td>-1.92±0.23</td>
<td>-2.70±0.42</td>
<td>72±2</td>
</tr>
<tr>
<td>(A.) \textit{echinus}</td>
<td>4200</td>
<td>-2.38±2.0</td>
<td>-2.63</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Fig. 3: Diurnal courses of photosynthetically active radiation (PAR), leaf temperature, leaf water potential, stomatal conductance and net CO₂ exchange for A. subterranea at (a) 3750 m and (b) 4200 m. Vertical bars represent standard error.

Cursos diurnos de radiación fotosintéticamente activa (PAR), temperatura foliar, potencial hídrico foliar, conductancia estomática e intercambio neto de CO₂ para A. subterranea a (a) 3750 m y (b) 4200 m. Las barras verticales representan el error estándar.
DISCUSSION

This study has revealed a number of eco-physiological characteristics of the genus *Adesmia* growing at different altitudes. All *Adesmia* species respond to water stress conditions through stomatal closure or low stomatal conductances throughout the day to maintain turgor. However, in spite of relatively low leaf conductances, *A. hystrix* at 3300 m loses turgor during the day. This may be due to their presence in drier equatorial facing slopes, with a thin soil layer and abundant rocks which are associated to lower water availability and higher temperature (Rada et al. 1985a, Squeo et al. 1996). Turgor loss may be a mechanism which enables the plant to lower leaf water potentials creating a larger gradient between plant and soil and therefore permitting the plant to absorb soil water which otherwise would not be available (Meinzer et al. 1986, Rada et al. 1989). On the other hand, *A. aegiceras* at this same altitude, but on different slopes, presents a more favorable water status, which permits it to maintain a relatively high stomatal conductance, and therefore, higher assimilation rates. It is interesting to note that this same species at the higher altitude loses turgor, resulting in stomatal closure and a reduction in CO₂ assimilation, even though temperature and PAR conditions are favorable. These two species, *A. hystrix* and *A. aegiceras*, seem to be the most tolerant to these water stress conditions. *A. subterranea* and *A. echinus* maintained higher leaf water potentials and low stomatal conductances throughout the courses studied, an indication of avoidance as a mechanism to survive low water availability. These results support Squeo et al. (1994) who describe the sites where these last two species are found as areas with gentle slopes and more humid due to the accumulation of winter snow melt.

In terms of assimilation capacity, *Adesmia*’s different life-forms show low

![Fig. 4: Diurnal courses of photosynthetically active radiation (PAR), leaf temperature, leaf water potential, stomatal conductance and net CO₂ exchange for *A. echinus* at 4200 m. Vertical bars represent standard error.](image-url)
maximum assimilation rates (2-7 μmol m⁻²s⁻¹) compared to other mid-latitude alpine environments, but are similar to those reported for the high tropical Andes. Subalpine perennial herbs and deciduous shrubs in the Rocky Mountains and in the Alps have maximum assimilation rates of 15-18 μmol m⁻²s⁻¹ (Körner & Diemer 1987, Körner & Larcher 1988, Knapp & Smith 1987). All life forms studied (perennial herbs, acaulescent and giant acaulescent rosettes, shrubs and trees) in the high tropical mountains have maximum assimilation rates between 4-11 μmol m⁻²s⁻¹ (Schulze et al. 1985, Goldstein et al. 1989, 1994, Rada et al. 1992, 1996, 1998).

On an annual basis, productivity in alpine vegetation is quite low compared to the rest of the biosphere, only extreme deserts are lower, because these areas are only productive 10 to 25% of the year, under low temperatures and occasional drought stress (Billings 1979). Although assimilation rates are similar for the high tropical and north-central Chilean desert Andean plants, differences in productivity must exist. Even though there is a distinct dry season in the tropical high mountains, which may affect plant productivity for a short period, growth and development carries on all year-round (Estrada et al. 1991, Monasterio & Sarmiento 1991). In the case of the Chilean Andes, biomass production concentrates in a shorter, water stressed growing season (November to April) characteristic of desert ecosystems and which may affect mean annual productivity (Squeo et al. 1993). On an annual basis, considering that this maximum relative growth rate may occur for only a short period of time, total biomass production must be significantly reduced. In addition, because deciduousness is the most important low temperature resistance mechanism during winter, annual total biomass accumulation must be lower if compared to tropical mountain ecosystems, where evergreens are dominant.

Cold resistance mechanisms have been described for the tropical Andes (Rada et al. 1985a,b, 1987, Goldstein et al. 1985, Azócar et al. 1988, Squeo et al. 1991) and for the north-central desert Andes (Squeo et al. 1996). For both environments, a soil-air temperature gradient is the main determinant of the mechanisms used by different plants to resist nighttime freezing temperatures (freezing tolerance for ground level plants and avoidance mechanisms for plants further away from the soil). For the high north-central Chilean Andes several questions remain open: What is the effect of this differentiation in terms of tolerance and avoidance on plant behavior during the early morning hours considering tolerant plants have to unfreeze before resuming diurnal physiological processes? Opposite to the soil-air temperature gradient produced at night (ground level temperatures lower than air temperatures), during the day temperatures at the soil surface are high compared to air temperatures. What is the effect of this diurnal temperature gradient on water and carbon balance parameters; i.e. optimum temperature for photosynthesis, CO₂ compensation points, maximum assimilation rates for the different life-forms? How do the species that have greater height behave in terms of water and carbon balance during their initial stages when growing close to the ground? Are there changes in the different parameters mentioned above as younger plants move away from the soil surface?

ACKNOWLEDGMENTS

This study was partially supported by Red Latinoamericana de Botánica (RLB), Universidad de La Serena and Compañía Minera El Indio grants.

LITERATURE CITED

