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ABSTRACT

Evolutionary physiology is a new discipline with roots in comparative physiology. One major change in the
emergence of this discipline was an explicit new focus on viewing organisms as the evolutionary products of
natural selection. The shift in research emphasis from comparative physiology to evolutionary physiology has
resulted in physiological traits becoming important elements in broad research programs of evolution and
ecology. Evolutionary quantitative genetics is a theory-based biological discipline that has developed the
quantitative tools to test explicit evolutionary hypotheses. The role of quantitative genetics has been
paramount, in studying the microevolution of morphology, behavior and life history, but not comparative
physiology. As a consequence, little basic information is known such as additive genetic variation of
physiological traits and the magnitude of genetically based trade-offs (i.e., genetic correlations) with other
traits. Here we explore possible causes for such gap, which we believe are related with the inconsistency of
what we call physiological traits across taxonomic and organizational divisions, combined with logistical
problems of pedigree—based analyses in complex traits.

Key words: evolutionary physiology, heritability, directional selection differential, response to selection,
fitness.

RESUMEN

La fisiologia evolutiva es una nueva disciplina con raices en la fisiologia comparada. Uno de los principales
cambios introducidos con esta disciplina es un enfoque donde los organismos son analizados en forma
explicita como el producto de seleccién natural. Este cambio de énfasis desde fisiologia comparada a
fisiologia evolutiva ha resultado en que los rasgos fisioldgicos son elementos importantes en el programa de
investigacion de la evolucién y la ecologia. La genética cuantitativa evolutiva es una disciplina biolégica con
bases tedricas que ha desarrollado las herramientas cuantitativas para someter a prueba hipdtesis evolutivas en
forma explicita. El rol de la genética cuantitativa ha sido notable en el estudio de la microevolucién de la
morfologia, comportamiento e historia de vida, pero no en fisiologia comparada. Como consecuencia, existe
escasa informacion bdsica sobre variacién genética aditiva de rasgos fisioldgicos y posibles compromisos
genéticos (i.e., correlaciones genéticas) que puedan tener estos con otros rasgos. En este comentario
exploramos las posibles causas de este vacio, las cuales creemos estdn relacionadas con la inconsistencia de
lo que llamamos rasgos fisiolégicos entre las divisiones taxonémicas y organizacionales, a los que se agregan
problemas logisticos inherentes a los andlisis genealdgicos en rasgos complejos.

Palabras clave: fisiologia evolutiva, heredabilidad, diferencial de seleccién direccional, respuesta a la
seleccion, adecuacion bioldgica.

INTRODUCTION

Biology has always differed from chemistry and
physics in the sense that fundamental theories
and laws that aim to predict every phenomenon
(as in the later) are unlikely to exist (Murray
2001). There are many reasons for that, most of
them related with the fact that (1) what we call

biological phenomena are complex frameworks
of processes occuring across several levels of
organization, and (2) there is an important
amount of stochasticity or environmental
“noise” added in each level of organization
(Weber 2000). However, biological sciences are
diverse; some fields are more formalized in
terms of theories and laws than others. This is
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probably due to historical, as well as practical
reasons. Disciplines that are mostly
experimental are less theoretical and are
essentially grounded on empirical patterns and
processes, an aspect that inspired their first
researchers. We suggest comparative physiology
is an example of this. The legacy of former
comparative physiologists was a change in the
way of thinking in order to consider organisms
as the evolutionary product of natural selection
(Schmidt-Nielsen 1995, McNab 2001). This aim
was commonly addressed by the experimental
comparison of physiological capacities between
organisms from extreme environments.
Conversely, disciplines that arised from the
interest to test explicit theoretical formulation
such as the Darwinian evolutionary theory,
have developed a more theoretical construct
preceding empirical patterns. An example of
the later is evolutionary quantitative genetics
(Weber 2000). In times of interdisciplinary
fusion and meta-analyses, the percolation of
quantitative genetic procedures into
comparative physiology would contribute
greatly to the understanding of the explicit
evolutionary causes and consequences of
physiological traits. However, as we have
searched in the literature, very few of these
interdisciplinary approaches have been carried
out so far. In this commentary we discuss the
potential of evolutionary quantitative genetics
to explore the underlying causes of
physiological adaptation, the probable causes
for its absence in comparative physiology, and
possible solutions for such missing link.

PHENOTYPE-BASED MICROEVOLUTION

Evolutionary population geneticists such as
Fisher (1930), Haldane (1932) or Wright
(1932) addressed quantitatively the problem of
selection and its evolutionary response in
natural populations (i.e., microevolution). To
solve their theoretical questions, they
developed statistical methods for correlational
and randomized experiments, that are now of
common usage in biological sciences such as
the analysis of variance, path analysis and
related analytical procedures. The concept of
fitness, as the reproductive potential of an
individual (Rg), is owed to Fisher (1930, see
also Huey & Berrigan 2001) who stated that the

mean fitness of a population is equal to the
additive genetic variance in relative fitness in
this moment. This was called “the fundamental
theorem of natural selection” (Ewens 1989),
which is part of a more general expression, the
Robertson-Price identity (Lynch & Walsh
1998, also known as the “secondary theorem of
natural selection”, Caswell 1989) that equates
the selection differential (S = the difference in
the mean value of the trait within generations)
with the covariance of any trait and relative
fitness (w = Ry / mean R). The predictability of
microevolution is encapsulated in the breeder’s
equation (Henderson 1984), which relates the
response to selection in any trait (R = the
difference in the mean value of the trait
between generations) to the product of narrow-
sense heritability (h? = the ratio between
additive genetic variance and phenotypic
variance) and S (= the directional selection
differential, see Fig. 1):

R = h2S (1)

For many traits that are interrelated through
genetic correlations (i.e., correlations that
persist across generations), Lande & Arnold
(1983) developed the multivariate selection
theory that basically changed the equation (1)
to a matrix equation. This new equation relates
Az (vector of the response to selection in a suit
of traits which replaces R) with G (the variance
— covariance additive genetic matrix which
replaces h?) and B (the directional selection
gradient, which replaces S),

Az =Gp (2)
This basic framework is a statistical
approach to dissect genetic variation

completely based on phenotypic measures and
known pedigrees. Contrarily to what common
knowledge regarding molecular genetics could
lead to believe, there is no better procedure to
determine the heritable variation in a trait in
natural populations.

THE CONFLICTING EVIDENCE: PHYSIOLOGICAL
TRAITS

Elements of the above equations as well as the
use and statistical comparisons of whole
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equations have become very sophisticated after
the income of computer-intensive likelihood
and Monte Carlo methods (Boldman et al.
1995, Roff 1997, Steppan et al. 2002). A broad
scope of organisms and types of traits are
known from this perspective and hence, a great
amount of predictable (micro) evolution is
possible (Mousseau & Roff 1987, Stirling et al.
2002). In fact, one of the general findings of
evolutionary genetics is that genetic variation is
abundant and the vast majority of traits respond
to selection (Mousseau et al. 2000). However,
the heritability of traits of interest to
comparative physiologists has rarely been
measured. Some progress has been made with
bioenergetic traits of endotherm. Hayes &
O’Connor (1999) presented evidence
supporting that the directional selection
differential (S) could be high in
thermoregulatory maximum metabolic rate
(MMR) of a rodent. Dohm et al. (1996) and
Dohm et al. (2001) showed that aerobic
endurance, basal metabolic rate (BMR) and
maximum metabolic rate (MMR) in Mus
exhibit low h2 thus suggesting that these traits
have low potential for response to selection.
Besides, current estimates of heritabilities of
metabolic rate in animals have low statistical
power (Dohm et al. 2001, Nespolo et al. 2003,
Bacigalupe et al. 2004). All this view may
change soon as we are aware of at least two
research programs currently in progress that are
recording large and significant heritabilities of
mammalian metabolic traits (Ksiazek et al.,
Nespolo et al. unpublished results; Sadowska et
al. unpublished results).

The relevance of maternal effects, including
the influence of parental care on the
performance of young, formerly considered
unimportant to adaptive evolution, have been
reconsidered recently as determinant for the
response to selection thanks to quantitative
genetics (Mousseau & Fox 1998). Several
bioenergetic traits of mammals have presented
high maternal-non additive genetic effects such
as nonshivering thermogenesis (NST),
sustained metabolic rate (SusMR), and mass of
metabolically active organs (Nespolo et al.
2003, Bacigalupe et al. 2004). However, the
adequate separation of maternal effects
themselves from common environmental
variance remains as an open question. On the
other hand, the genetic correlation among

bioenergetic traits and life history traits, that is,
the components of the G- matrix that predict
evolution of the integrated phenotype appear to
be significantly different from zero in several
cases (Nespolo, Bustamante, Bacigalupe &
Bozinovic unpublished results). Indirect
analyses suggest that metabolism may be
heritable in vertebrates because metabolic rates
(VO,) are repeatable (Hayes & Chappell 1990,
Speakman et al. 1994, Chappell et al. 1995,
Berteaux et al. 1996, Hayes & O’Connor 1999),
because an underlying trait (e.g., hemoglobin
polymorphism, brown adipose tissue) presents
heritable variation (Snyder 1978, Chappell &
Snyder 1984, Lynch et al. 1988, Sorci et al.
1995), or because VO, shows high broad-sense
heritability (Garland et al. 1990). However, it
should be noted that (1) high repeatability is
not a guarantee of high heritability (Lessels &
Boag 1987, Dohm 2002), (2) underlying
variables are expected to be more heritable
than whole-organism traits because the latter
are less influenced by environmental variance
(Price & Schluter 1991, Kruuk et al. 2003),
and (3) broad-sense heritability includes
maternal and common environmental effects,
hence it is larger than h? (Falconer & Mackay
1997).

Clearly, the few quantitative genetic studies
of physiological traits in natural populations of
vertebrates have given mixed results that claim
for more research with more statistical power.
The scarcity of data about genetic variances
and genetic correlations in physiological traits
is paradoxical considering the long tradition in
research of comparative physiologists. Almost
in parallel, evolutionary quantitative geneticists
have studied the dynamics of all components of
equations (1) and (2) for life histories,
morphology and behavior in birds (Barbraud
2000, Szekely et al. 2000, Merila et al. 2001),
mammals (Boonstra & Hochachka 1997, Kruuk
et al. 2000, Thomas et al. 2000), reptiles
(Janzen 1993, Shine & Shetty 2001, Sinervo &
Zamudio 2001), amphibians (Van Buskirk &
Schmidt 2000, Watkins 2001, Uller et al.
2002), fishes (Reznick et al. 1997, Brooks &
Endler 2001, Karino & Haijima 2001), insects
(Fox et al. 1999, Begin & Roff 2001, Stirling et
al. 2002), mollusks (Parsonage & Hughes
2002), crustaceans (Pfrender & Lynch 2000)
and bacteria (Travisano et al. 1995, Rileay et
al. 2001).
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Fig. 1: Simplified diagram showing the analysis of the response to directional selection in a physio-
logical trait, in a population. In this example, directional selection, evidenced by a positive correla-
tion between relative fitness (w: the ratio between absolute and mean lifetime reproductive poten-
tial, Ry, see Huey and Berrigan, 2001) and the mean fitness of the population, is acting on the right
tail of a distribution of the trait (A and B). Red and green curves represent the distribution of the
trait before and after selection within a generation, respectively (B and C). Shaded area in the red
curve represent individuals with increased survival and/or differential reproduction, according to
the fitness function. Similarly, u, and u represent the mean populational values before and after
selection, respectively. The mean of the trait in the descendents of the selected individuals (i.e.,
between generations) is u;. In this case, directional selection differential (S = w - w,) and response
to selection (R = u; - u,) in a hypotetical trait with narrow-sense heritability (h?) of intermediate
value (i.e., h? ~ 0.5) is reflected in the fact that although selection is strong (the displacement of the
green curve from the red curve), its evolutionary response is intermediate (the displacement of the
blue curve from the red curve). The progresively shadowed (or the slope of the curve in A) area in
the red curve represent, in a diagramatic form, the Robertson — Price identity: the selection diffe-
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There are obvious logistical problems
related with developing quantitative genetic
studies in comparative physiology. One major
difficulty is to measure hundreds of
individuals, as any pedigree-based design
requires. Another problem relates to the fact
that “physiological traits” are variables that are
not functionally consistent across species. For
some animals, many physiological traits (e.g.,
dessication resistance in insects, Hoffman,
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2000) are functionally different from traits
classified as “physiological” in other animals
(e.g., oxygen carrying capacity by haemoglobin
in mammals, Chappell & Snyder 1984). Hence,
heritability estimates of physiological traits
may not be readily used to infer values in other
physiological traits. Thus the scarcity of
estimates and the breadth of variation within
the physiological category make it difficult to
reach firm conclusions regarding the range of
heritabilities in this type of traits. These
complications could be avoided, or at least
ameliorated, by means of: (1) comparing
estimates of different physiological traits
obtained during the same experiments and
measured to the same individuals, and (2)
considering a common physiological trait in
very different organisms. To sum up, much
experimental work is needed to attain this
objective, followed by an appropriate synthesis
in the form of a meta-analysis to decide finally
if physiology has the same microevolutionary
potential than morphology, behavior and
fitness.
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