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ABSTRACT

Trichomycterus areolatus and Trichomycterus chiltoni are endemic siluriform fishes of Chile. They are the
only Chilean species of this genus that live in sympatry and coexist in the Biobio basin. High trophic niche
overlap between both species was found. Horn’s index varied from 0.668 to 0.885 among seasons, without
significant differences, and Schoener’s index varied from 0.639 to 0.912. Also the discriminant analysis
showed no significant differences in prey item between the two species. Trophic composition of T. chiltoni
and T. areolatus consisted mainly in chironomid larvae and other aquatic invertebrates. At all seasons 7.
chiltoni showed the greatest prey richness. Principal component analysis (PCA) showed a high similarity
between diets of T. areolatus and T. chiltoni. These diet scores were significantly related with body size in 7.
chiltoni whereas T. areolatus showed a significant relationship with seasons. This may indicate a generalist
strategy in 7. areolatus by varying its diet in function of available prey items in each season, whereas 7.
chiltoni would be specialized in relation to individual size and intraspecific habitat partitioning.
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RESUMEN

Trichomycterus areolatus y Trichomycterus chiltoni son peces Siluriformes endémicos de Chile, siendo las
unicas especies chilenas conocidas de este género que coexisten en simpatria. Se encontrd alta sobreposicion
de nicho tréfico entre estas dos especies. El indice de Horn varié de 0,668 a 0,885 entre estaciones, sin
diferencias significativas, y el indice de Schoener varié de 0,639 a 0,912. Ademds el andlisis discriminante no
mostré diferencias significativas en las presas entre las dos especies. La composicién de la dieta de T. chiltoni
y T. areolatus consistié principalmente en larvas de chironémidos y otros invertebrados acudticos. En todas
las estaciones estudiadas 7. chiltoni mostré una riqueza de presas mayor. El andlisis de componentes
principales (PCA) mostré una gran similitud entre las dietas de T. areolatus y T. chiltoni. Estos resultados se
relacionaron significativamente con las medidas de tamafio corporal en 7. chiltoni mientras que 7. areolatus
mostré una relacién significativa con las estaciones. Esto podria indicar una estrategia generalista en 7.
areolatus, variando su dieta en funcién de las presas disponibles en cada estacién, mientras que T. chiltoni
estaria especializado en funcién del tamafio individual.

Palabras clave: dieta, simpatria, Trichomycterus areolatus, Trichomycterus chiltoni.

inhibiting niche shifts, may be countered by
natural selection favouring ecological

INTRODUCTION

Early notions of ecological relations of
closely related species indicate that these
species cannot occupy the same habitat
unless they differ in resource utilization
(Dumas 1964). Most studies compare closely
related taxa that occur in allopatry.
Nevertheless in sympatry, the stabilizing
forces that promote niche conservatism,

divergence to minimize the intensity of
interspecific interactions (Losos et al. 2003).
This agrees with the competitive exclusion
principle that indicates that if two or more
non-interbreeding populations compete for
the same limited resources, then all but one
of them will be driven to extinction
(Hutchinson 1965). In this paper we examine
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trophic relationships of two congeneric
freshwater fishes that inhabit the same basin.

In Chilean freshwater ecosystems sympatric
coexistence of congeneric fishes is an unusual
phenomenon (Vila et al. 1999, Dyer 2000, Vila
& Pardo 2006), which may be explained in part
by niche segregation through resource
partitioning (i.e., diet, time and/or space,
Schoener 1974). Habitat shift is a common
mechanism for niche segregation in freshwater
fishes (Werner & Hall 1977). However, niche
partitioning may have an asymmetric effect
among species, relegating the weakest
competitor to marginal habitats (Nilson 1967,
Werner & Hall 1976, 1977), where populations
are more susceptible to local extinction (Zaret
& Paine 1973).

Trichomycterus is a catfish genus including
about 120 species, commonly found in
neotropical headwater streams (Eigenmann
1918, Pouilly & Miranda 2003). In Chile,
Trichomycterus is represented by five endemic
species with a wide altitudinal and latitudinal
distribution (Pardo et al. 2005). These species
inhabit the rhithronic zone of freshwater systems
and show the highest relative abundance among
native fishes. Trichomycterus areolatus
Valenciennes, inhabits rivers from Huasco (28°
27’ S) to Chiloé island (41° 27°S), and
Trichomycterus chiltoni (Eigenmann) endemic at
Biobio basin (36° 49” S) (Dyer 2000, Habit et al.
2006, Vila et al. 2006). These two species
overlap extensively in the Biobio basin, and they
are the only species of this genus that live in
sympatry in Chile (Arratia 1981). The
morphological differentiation between them is
slight, however adults of 7. chiltoni reach a
larger total length (maximun length 170 mm)
than T. areolatus (maximun length 116 mm)
(Eigenmann 1927). This similarity probably
increases their potential competitive
interactions, mainly due to the high
morphological resemblance (Eigenman 1927)
and the similar bottom-dwelling behaviour
(Arratia 1990). Besides, T. areolatus and T.
chiltoni may be classified as strict insectivores,
feeding mainly on aquatic insects (Habit et al.
2005), and these fishes, as do other siluroids,
scrape organisms from plant and rock surfaces
(Aranha et al. 1998).

The present study investigated the diet of
Trichomycterus species from Biobio River,
studying their mutual trophic interactions. The

purpose was to infer the ecological process that
could ameliorate the competitive interaction
between these species, thereby sustaining their
present coexistence.

MATERIALS AND METHODS
Study area

Biobio basin (36°43°-38°55" S, 70°49°-73° 10’
W) has an Andean origin, and its drainage area
of 24,029 km? represents Chile’s third largest
river basin. It is a typical western Andean
system characterized in having a length of ~380
km and a marked change in flow that varies
between seasons from 300 to 1,200 m3 s-!.
Local climatic conditions are Mediterranean
with 1,308.2 mm of mean annual precipitation
and a mean annual temperature of 12.4 °C
(Niemeyer & Cereceda 1984).

In this basin 14 endemic species of fishes
have been reported, corresponding to 31.8 % of
the Chilean native species (Campos 1985, Ruiz
et al. 1993, Vila et al. 1999).

Diet analysis

From 1994 to 2000, bimonthly collections
of T. areolatus and T. chiltoni specimens were
made in the Biobio basin obtaining 452
specimens among which T. chiltoni was the
most abundant (76.8 %). Fishes were captured
using a Coffelt electrofishing backpack
equipment and were preserved in 4 % buffered
formalin. AIll esophagii and stomachs of
captured specimens were analyzed and 70.4 %
were empty, where 7. areolatus shows the
lowest proportion of empty stomachs (59.1 %),
compared with 7. chiltoni (79.2 %).

Prey items in the esophagus and stomach
were analyzed under a dissecting microscope,
and identified to order or family level whenever
possible with available keys (Merritt &
Cummins 1978, Lopretto & Tell 1995). Also,
fishes were sexed and total body length
measured with 0.1 mm precision. Total and
eviscerated specimens were weighted with 0.01
g precision.

Horn’s index of niche overlap (Krebs 1999)
was calculated between T. areolatus and T.
chiltoni on a seasonal basis. As a complement
and due to the absence of quantitative data
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concerning the resources, Schoener’s overlap
index (Schoener 1970, Wallace 1981, Kahl
2006) was determined. The confidence
intervals of Horn’s index were estimated using
the percentile method by bootstraping 10.000
individual diets (Manly 1997). A principal
components analysis (PCA) was applied to
individuals showing at least one prey item. For
each species, the PCA scores of the first and
second axes were related to date, body length,
total and eviscerated weight, using Spearman’s
rank correlation (Zar 1996).

Also, to evaluate differences in trophic niche
between T. areolatus and T. chiltoni, a
Discriminant Analysis was performed, with a
Jack-knifed classification matrix, that was
complete using the first, second and third axis of
PCA analysis of diet composition (Fisher, 1936).

RESULTS

Trophic composition of 7. chiltoni and T.
areolatus consisted mainly of chironomids in
all seasons (Fig. 1). Ephemeroptera was almost
absent in both species during winter, but
represented almost 20 % of prey items the rest
of the year. Prey organisms that represented
less than five percent (Others), include the
following insects: Coleoptera, Diptera,
Baetidae, Tipulidae, Simulidae and Odonata;
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crustaceans: Decapoda and Amphipoda;
Hirudinea and molluscs. Prey items of the class
Others (Fig. 1) in T. areolatus were less diverse
but more abundant. Trichomycterus chiltoni
showed the greatest niche breadth.

Horn’s trophic niche overlap between T.
chiltoni and T. areolatus varied from 0.668 to
0.885, among seasons. Higher values were found
during summer and spring, but 95 % bootstrap
confidence interval overlapped between all
seasons (Fig. 2), showing non-significant
differences between them. On the other hand,
Schoener’s overlap index presented similar
variation from 0.639 to 0.912 in summer and
autumn, respectively. Intermediate values were
found in winter (0.814) and spring (0.835).

The first two PCA factors, performed using
the diet composition of 7. areolatus and T.
chiltoni at all seasons, explained over 85 % of
the variance. That would indicate a strong
similarity between diets of these species (Fig.
3). However, in T. areolatus the first PCA
factor was correlated significantly with the
sampling date, whereas the first and second
factors of T. chiltoni showed a strong
relationship with body size (Table 1). PCA was
more effective in classifying 7. chiltoni than T.
areolatus (Table 2). The discriminant analyses
showed no significant differences in prey items
between the two species (Wilks” lambda =
098, F4’ 137 = 075, P= 056)

®)

00
Winter Spring Summer Autumn

Winter Spring Summer Autumn

Fig. 1: Summary of seasonal diet composition of (A) T. chiltoni and (B) T. areolatus. Bars repre-
sent prey items: (E_=< 1) Trichoptera, ((___]) Ephemeroptera, () Chironomidae,
(Z—71) Plecoptera and (mmmmmm) Others. Number of prey items is displayed over bars.

Resumen de la composicion dietaria estacional de (A) T. chiltoni y (B) T. areolatus. Las barras representan los {temes de

presa: (< 1) Trichoptera, ((____]) Ephemeroptera,(( ) Chironomidae, ([~ 1) Plecoptera y

(I ) Otros. El nimero de itemes presa son mostrados sobre las barras.
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Fig. 2: Horn’s indices of niche overlap between T. chiltoni and T. areolatus calculated for all
seasons. Error bars represent bootstrap 95 % confidence intervals.

Indices de Horn para la sobreposicién de nicho entre T. chiltoni y T. areolatus calculados para todas las estaciones. Las
barras de error representan los intervalos de confianza al 95 % obtenidos por Bootstrap.
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Fig. 3: Plot representing the first two factors of a principal components analysis performed on the
diet composition of 7. chiltoni (A) and T. areolatus (+), between 1994 and 2000 in all seasons.
Percentage of the total variance of each factor is shown in parenthesis.

Grafico representando los dos primeros factores del andlisis de componentes principales realizados con la composicion de

la dieta de T. chiltoni (A) y T. areolatus (+), entre 1994 y 2000 en todas las estaciones. El porcentaje de la varianza total de
cada factor es mostrado entre paréntesis.
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TABLE 1

Spearman correlation between first and second axis of PCA analysis against biological variables for
T. chiltoni (n = 102) and T. areolatus (n = 40); Lt = total length, Wt = total weight, We =
eviscerated weight

Correlaciones de Spearman entre el primer y segundo eje del andlisis de PCA versus variables biolégicas para T. chiltoni (n
=102) y T. areolatus (n = 40); Lt = largo total, Wt = peso total, W = peso eviscerado

Species Lt Wt We Date
T. areolatus Factor 1 0.104 0.049 0.072 *-0.363
Factor 2 -0.134 -0.069 -0.074 0.071
T. chiltoni Factor 1 *0.219 *0.204 *0.226 -0.008
Factor 2 *0.307 *%(0.343 *0.322 -0.055
*P<0.05; ** P<0.001
TABLE 2 scarce (Hutchinson 1965). Feeding results of 7.

Jack-knifed classification matrix, using first,
second and third axis of PCA analysis of diet
composition

Matriz de clasificacion corregida con jackknife, utilizando
los tres primeros ejes del andlisis de PCA de la
composicion de la dieta

T. areolatus T. chiltoni % correct
T. areolatus 15 28 35
T. chiltoni 25 74 75
Total 40 102 63

Wilks’ lambda = 0.978, Fy 13, = 0.753, P = 0.5579

DISCUSSION

According to previous works (Habit et al.
2005) and to our results, Trichomycterus
areolatus and T. chiltoni are mainly benthic
feeders, preying mostly on insect larval stages.
Our estimates of resource partitioning between
T. areolatus and T. chiltoni in the Biobio River,
revealed high Schoener’s niche overlap, which
is consistent with Horn’s overlap values in the
trophic niche throughout the year. Also, the
discriminant analysis does not show significant
differences between these two species,
indicating a greater discrimination by T.
chiltoni individuals than by T. areolatus ones,
showing the highest overlap at smaller sizes.
These results led us to consider that these
fishes should present mechanisms to avoid
competitive interactions when the resources are

areolatus and T. chiltoni suggest these two
species may coexist mainly due to differences
in their observed diet patterns. Trichomycterus
areolatus correlates its diet with seasonal
changes, and this would be related to the well
described yearly changes shown by insect
abundance and diversity (Ferndndez et al. 2001,
Sabando 2004). We speculate that this implies
generalist behaviour, associated to seasonal
resource changes. On the other hand 7. chiltoni
shows a differential diet at different body sizes
as intraspecific habitat partitioning (Arratia
1983). The prey items captured by 7. chiltoni
showed a greater taxa richness, what could be
explained by the larger size that this fish
reaches, allowing consumption of all preys
eaten by T. areolatus plus bigger items such as
decapods and dragonfly larvae that are absent
in the stomach contents of 7. areolatus. This
widening in the trophic niche could be related
with morphological characteristics such as
mouth and body size that determine, in many
cases, the types of prey consumed by fishes
(Keeley & Grant 1997, Karpouzi & Stergiou
2003). Size range in these catfishes would have
a constraining influence on the kind of trophic
niche and therefore, on the feeding mechanism
as well (Adriaens 2003). Thus, we suggest that
the higher relative abundance of T. chiltoni in
the Biobio river can be attributable to
interspecific competition, with an asymmetric
competitive feeding relationship that clearly
favours T. chiltoni and suggests that 7.
areolatus is the weakest competitor. Future
work should consider exclusion experiments
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that could support the suggested competitive
relationship between T. chiltoni and T.
areolatus described herein.
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