
347MODELLING DISTRIBUTION OF PATAGONIAN INSECTSRevista Chilena de Historia Natural
82: 347-360, 2009

RESEARCH ARTICLE

An evaluation of methods for modelling distribution of
Patagonian insects

Una evaluación de los métodos para modelizar la distribución de insectos patagónicos

MARCELO F. TOGNELLI1, SERGIO A. ROIG-JUÑENT1, ADRIANA E. MARVALDI1, GUSTAVO E. FLORES1

& JORGE M. LOBO2,*

1 Laboratorio de Entomología, IADIZA-CONICET, CCT-Mendoza, CC 507, 5500 Mendoza, Argentina
2 Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC)

 c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
* Corresponding author: mcnj117@mncn.csic.es

ABSTRACT

Various studies have shown that model performance may vary depending on the species being modelled, the
study area, or the number of sampled localities, and suggest that it is necessary to assess which model is
better for a particular situation. Thus, in this study we evaluate the performance of different techniques for
modelling the distribution of Patagonian insects. We applied eight of the most widely used modelling methods
(artificial neural networks, BIOCLIM, classification and regression trees, DOMAIN, generalized additive
models, GARP, generalized linear models, and Maxent) to the distribution of ten Patagonian insect species.
We compared model performance with five accuracy measures. To overcome the problem of not having
reliable absence data with which to evaluate model performance, we used randomly selected pseudo-absences
located outside of the polygon area defined by taxonomic experts. Our analyses show significant differences
among modelling methods depending on the chosen accuracy measure. Maxent performed the best according
to four out of the five accuracy measures, although its accuracy did not differ significantly from that obtained
with artificial neural networks. When assessed on per species basis, Maxent was also one of the strongest
performing methods, particularly for species sampled from a relatively low number of localities. Overall, our
study identified four groups of modelling techniques based on model performance. The top-performing group
is composed of Maxent and artificial neural networks, followed closely by the DOMAIN technique. The third
group includes GARP, GAM, GLM, and CART, and the fourth best performer is the BIOCLIM technique.
Although these results may allow obtaining better distributional predictions for reserve selection, it is
necessary to be cautious in their use due to the provisional nature of these simulations.

Key words: Expert opinion, model evaluation, Patagonia, pseudo-absence data, species distribution
modelling.

RESUMEN

Varios estudios han mostrado que el desempeño de los modelos de distribución puede variar dependiendo de
la especie modelizada, el área de estudio o el número de localidades de presencia utilizadas, sugiriendo que es
necesario evaluar cuál es la mejor técnica de modelización en cada situación concreta. En este estudio
evaluamos distintas técnicas de modelización para la distribución de los insectos patagónicos. Hemos aplicado
ocho de los métodos más ampliamente usados (redes neuronales, BIOCLIM, árboles de clasificación y
regresión, DOMAIN, Modelos Aditivos Generalizados, GARP, Modelos Lineares Generalizados y Maxent) a
los datos de distribución de diez especies de insectos patagónicos, comparando su efectividad mediante cinco
medidas diferentes. Para evitar el problema de la carencia de datos de ausencia fiables con los que evaluar los
modelos, hemos utilizado pseudoausencias seleccionadas al azar fuera de un área poligonal definida por
taxónomos expertos. Nuestros análisis muestran diferencias significativas entre los distintos métodos de
modelización dependiendo de la medida de validación utilizada. Maxent es el método que ofrece mejores
resultados para cuatro de las cinco medidas de validación utilizadas, aunque su precisión no difiere de la
obtenida con redes neuronales. Cuando se examina la efectividad para cada una de las especies, Maxent
resultó también uno de los métodos más fiables, especialmente en el caso de aquellas especies con un pequeño
número de localidades. En conjunto, este estudio identifica cuatro grupos de técnicas de modelización. El de
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mayor fiabilidad sería el compuesto por Maxent y las redes neuronales, seguido de cerca por DOMAIN. El
tercer grupo incluiría GARP, GAM, GLM y CART, mientras que el cuarto estaría formado por BIOCLIM.
Aunque estos resultados pueden permitir obtener mejores predicciones de distribución con capacidad para ser
utilizadas en la planificación de reservas, es necesario ser cauto en su utilización debido a la naturaleza
provisional de estas simulaciones.

Palabras clave: Datos de pseudoausencia, evaluación de modelos, modelos de distribución de especies,
opinión de expertos, Patagonia.

absence data are frequently lacking, an
alternative to presence-absence techniques
involves generating “pseudo-absences” from
background areas (Zaniewski et al. 2002,
Engler et al. 2004). Generally, pseudo-absences
are randomly selected from the background
environment (Stockwell & Peterson 2002) or
by using environmentally weighted random
sampling (Zaniewski et al. 2002, Engler et al.
2004).  The comparative performance of
different modelling methods has been assessed
with varying results (Muñoz & Felicísimo
2004, Segurado & Araújo 2004, Elith et al.
2006, Hernandez et al. 2006, Pearson et al.
2006).  Overall ,  results show that model
performance varies according to the taxa being
modelled, the studied region, and the sample
size (i.e., number of locality records). Thus,
before generating predictive distribution
models for a specific taxonomic group and
region, it is necessary to first examine the
comparative performance of the different
possible techniques.

Predictive models of species distribution
have been generally developed for plants and
vertebrate species (see Guisan & Thuiller 2005
and references therein). Only a few studies
have modelled the potential distribution of
insect species, and these have dealt mostly with
vectors of human diseases (Komar et al. 2005,
López-Cárdenas et al. 2005, Peterson et al.
2005) and introduced species (Roura-Pascual et
al. 2005, Fitzpatrick et al. 2006). Although
arthropod species comprise approximately 80
% of total species (Rupert et al. 2004), the lack
of reliable taxonomic and distributional
information for insects has prevented the use of
species distribution models for conservation
purposes (but see Meggs et al. 2004, Chefaoui
et al. 2005). As conservation prioritization is
generally based on higher-level taxa (i.e.,
vertebrates), although they may not be effective
surrogates for invertebrates, our general aim is
obtaining guidelines for the further use of

INTRODUCTION

One of the central problems in ecology is
understanding how organisms are distributed
on earth.  In the absence of a complete
inventory of where species occur, predictive
models of species distribution are an alternative
that is increasingly being explored to produce
detailed distribution and habitat suitability
maps. Species distribution models examine
associations between general environmental
characteristics and the known occurrences of a
particular species (Guisan & Zimmermann
2000, Scott et al. 2002, Guisan & Thuiller
2005). These models allow us to project the
geographic distribution of a species into
unexplored regions, or into scenarios of future
or past climatic conditions. In recent years, this
approach has been widely applied to address
issues in ecology (Anderson et al. 2003, Vetaas
2002), biogeography (Coudun et al. 2006,
Luoto et al. 2006), evolution (Peterson et al.
1999, Graham et al. 2004, Martínez-Meyer &
Peterson 2006), conservation biology (Ferrier
2002, Araújo et al. 2004, Cabeza et al. 2004;
Sanchez-Cordero et al. 2005), species invasion
(Peterson 2005, Fitzpatrick et al. 2006), and the
effects of climate change on species (Skov &
Svenning 2004, Thomas et al. 2004, Thuiller
2004, Araújo et al. 2006, Thuiller et al. 2006).
However, many studies have not expressly
addressed a very important part  of the
modelling process: selecting the most
appropriate modelling method to address a
particular question (Pearson et al. 2006).

Numerous modelling methods and tools
have been developed in the last decade (Guisan
& Thuiller 2005, Elith et al. 2006). These can
be roughly divided into those that only use
records of species presence (e.g., bioclimatic
envelopes and distance-based measures) and
those that use presence-absence data (e.g.,
general linear and additive models and decision
trees; Guisan & Zimmermann 2000). As
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distribution models in the design of
conservation plans for Patagonian insects.
Using the data of ten species of insects
belonging to different families of southern
South America for which we only have
presence data,  we assessed here the
comparative performance of eight of the most
widely used modelling techniques. Predictions
of profile presence-only methods and
discrimination modelling techniques which use
environmentally weighted pseudo-absences
were compared. As absence information is
unreliable, model predictions were evaluated
using absence areas based on expert opinions.

METHODS

Species and climate data

We studied a region of  southern South
America extending from 46°15’ to 75°66’ W
and 23°98’ to 55°98’ S. Species locality data
included presence data for 10 insect species
(Table 1) .  These species  were selected
because they are good representatives of their
taxonomic groups in the studied region. The
minimum number of presence localities for a
species was 19, the maximum number was 94,
and the median was 39.

A set of 25 climatic variables was initially
considered (Table 2). Twenty-one climatic

variables were extracted from the WorldClim
database (Hijmans et al. 2005), and four
variables were extracted from the Climate
Research Unit (New et al. 2002). The spatial
resolution of environmental variables was 0.04º
(approximately 4.6 x 4.6 km). These variables
were standardized to eliminate measurement-
scale effects (with a mean of 0 and a standard
deviation of 1). To select variables that better
represent the environment of the region, we
used the so-called Jolliffe’s principal
component method (Rencher 2002). First, a
Principal Component Analysis (PCA) was
carried out including all variables, and five
non-correlated factors with eigenvalues ≥ 1
were obtained that explained 87.13 % of the
climatic variation across the region. For each
one of the five PCA factors, the variable with
the highest factor loadings (which measure the
correlations between the original variables and
the factor axes) was selected (> 0.8). The five
selected variables were annual mean
temperature, isothermality, mean diurnal range,
precipitation during the driest month of the
year, and precipitation during the wettest
quarter of the year. Relative humidity was also
included as a predictor variable because it was
the only one that was not significantly
correlated with any of the formerly mentioned
PCA factors. In total, these six variables were
considered to be the most representative of the
climate in southern South America.

TABLE 1

List of species used for modelling including a unique identifier and the number of presence
localities where they have been collected.

Lista de especies usadas para modelizar incluyendo un identificador único y el número de localidades de presencia donde
fueron colectadas.

ID Sample size Species Family

1 19 Aegorhinus superciliosus (Guerin) Curculionidae

2 24 Chirodamus kingii Haliday Pompilidae

3 30 Cnemalobus obscurus (Brullé) Carabidae

4 31 Migadops latus (Guerin) Carabidae

5 34 Aegorhinus nodipennis (Hope) Curculionidae

6 44 Mitragenius araneiformis Curtis Tenebrionidae

7 60 Baripus clivinoides Curtis Carabidae

8 86 Rhyephenes maillei (Gay and Solier) Curculionidae

9 89 Epipedonota cristallisata (Lacordaire) Tenebrionidae

10 94 Creobius eydouxii Guérin-Ménéville Carabidae
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Modelling methods and evaluation

We tested eight of the most commonly used
modelling methods. The type of data these
techniques use distinguishes them: those that use
presence-only data (BIOCLIM, DOMAIN,
GARP, and Maxent), and those that require
presence-absence data (Artificial Neural
Networks, Classification and Regression Trees,
Generalized Additive Models, and Generalized
Linear Models). Within the first group, two of the

TABLE 2

Predictor variables from which six variables
(marked with an asterisk) were selected (see

text for details) for developing models.
Numbers indicate the origin of the variables as

follows: 1 WorldClim database; 2 CRU
database.

Variables predictivas a partir de las cuales se
seleccionaron seis variables (marcadas con un asterisco)
para generar los modelos (ver texto para mayor detalle).

Los números indican el origen de las variables de la
siguiente manera: 1 base de datos WorldClim; 2 base de

datos CRU.

Predictor variable Source

Annual mean temperature * 1

Annual precipitation 1

Frost days frequency 2

Isothermality * 1

Maximum annual temperature 1

Maximum temperature of warmest month 1

Mean diurnal range * 1

Mean temperature of coldest quarter 1

Mean temperature of driest quarter 1

Mean temperature of warmest quarter 1

Mean temperature of wettest quarter 1

Minimum annual temperature 1

Minimum temperature of coldest month 1

Precipitation of coldest quarter 1

Precipitation of driest month * 1

Precipitation of driest quarter 1

Precipitation of warmest quarter 1

Precipitation of wettest month 1

Precipitation of wettest quarter * 1

Precipitation seasonality 1

Relative humidity * 2

Sunshine duration 2

Temperature annual range 1

Temperature seasonality 1

Wind speed 2

methods (GARP and Maxent) use a sample of the
background environment as pseudo-absences.
BIOCLIM and DOMAIN were run with DIVA-
GIS (www.diva-gis.org) using default
specifications. GARP models were run using the
best subset (Anderson et al. 2003) module of
OpenModeller (www.openmodeller.sf.net), and
maximum entropy models were run with Maxent
(Phillips et al. 2006). Artificial Neural Networks
(ANN), Classification and Regression Trees
(CART), Generalized Additive Models (GAM),
and Generalized Linear Models (GLM) were
fitted in R (www.r-project.org) using the mgcv,
nnet and tree packages.

For each species, we randomly separated the
occurrence localities into 10 partitions. Each
partition was created by selecting 50 % of the
data to train the models, and the remaining 50 %
to test the models. For those modelling methods
that required presence-absence data to run, we
generated environmentally weighted pseudo-
absences (Lobo et al. 2006). These pseudo-
absences were selected calculating the maximum
and minimum scores of the six selected
environmental variables for the presence
localities of each species. Then, we calculated
the multidimensional envelope defined by the
scores of the localities in which the species was
recorded. Pseudo-absences were then selected
outside the environmentally suitable region (10
times the number of training presences).

Several discrimination indices are
frequently used to test model performance
(Fielding & Bell 1997). These are usually
derived from the two by two confusion matrix,
which describes the frequency of correctly and
incorrectly predicted data from the known
presences and absences. However,  when
reliable absence data are lacking and pseudo-
absences selected across environmentally
unsuitable regions are used, model absence
predictions should not be validated using these
pseudo-absences; high absence success rates
would only indicate successful forecasting of
the locations under unfavourable environmental
regions. Thus, when only presence data are
available, commonly applied indices, such as
Kappa and Area Under the Curve (AUC) of the
ROC plot,  cannot be calculated. In this
instance, to overcome the problem of not
having reliable absence data with which to
evaluate model performance, we used the
taxonomic expertise of some of the authors
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(SARJ, AEM, and GEF), who are specialists in
the taxa being modelled. These experts defined
a polygon area based on their collecting
experience and knowledge of where the species
might occur, including those probable areas
inhabited by the species for which no presence
information exist. We then generated 10,000
random pseudo-absences (validation pseudo-
absences or VSA) outside the polygon area
defined by the taxonomic experts to calculate
performance evaluation indices.

To assess the agreement between the
presence-VSA data and the predictions
obtained by the different modelling methods,
we calculated the AUC, maximum Kappa
value, and the true skill  statistic (TSS;
Allouche et al. 2006). Area Under the ROC
Curve (AUC) is one of the most widely used
approaches to evaluate model performance
(Fielding & Bell 1997) whose results should
not be used in species’ model comparisons
when the ratios between the extent of
occurrence and the whole extent of the territory
under study differ (Lobo et al. 2008). In our
case, we have decided to maintain AUC results
because all the species considered differ
slightly in their occurrence area, and the
analyzed territory is the same. AUC measures
the ability of a model to discriminate between
sites where a species is present and sites where
a species is absent. Values of AUC range from
0.5 for models with predictive discrimination
abilities no better than random to 1 for models
with perfect predictive ability (Fielding & Bell
1997). The Kappa statistic measures the
proportion of correctly predicted sites after
accounting for the probability of chance
agreement (Moisen & Frescino 2002). It
requires a suitability cut-off threshold, which is
generally arbitrarily selected. Alternatively,
one can choose the maximum value for the
Kappa score obtained from varying the
threshold from 0 to 1 (Guisan et al. 1998). We
calculated and used this maximum score (max
Kappa) for each modelling method. The True
Skill  Statistic (TSS) has been recently
introduced to ecology as an alternative measure
of model accuracy (Allouche et al. 2006). In
addition to having the advantages of Kappa
(i.e. ,  takes into account omission and
commission errors and corrects for chance
agreement), TSS also does not depend on
prevalence (Allouche et al .  2006).  It  is

generally used in weather forecasting and
compares the number of correctly classified
forecasts, excluding those attributable to
random guessing, to that of a hypothetical set
of perfect forecasts (Allouche et al. 2006). TSS
ranges from -1 to +1, where values of 0 or less
indicate a model performance no better than
random, and a value of +1 indicates perfect
performance (Allouche et al. 2006). In addition
to these three accuracy measures, we calculated
sensitivity (the proportion of true positives
correctly predicted) and specificity (the
proportion of true negatives correctly
predicted). To calculate these two last accuracy
measures we used the point of the ROC curve
where the sum of sensitivity and specificity is
maximized as a cut-off criterion to convert
continuous model predictions to binary
classifications (presence/absence).  This
threshold has the advantage of giving equal
weights to the probability of success of both
presences and absences (Manel et al. 2001). It
is one of the most appropriate methods to
correctly derive a binary variable from
continuous probabili t ies when species
presence-absence distribution data are
unbalanced (Liu et al. 2005, Jiménez-Valverde
& Lobo 2006).

We used the Friedman test, which is a non-
parametric version of the one-way repeated
measures ANOVA (Sprent & Smeeton 2001),
to test for differences in modelling performance
among the different modelling methods. We
then performed post hoc tests of multiple
comparisons (Dunn test) to determine which
methods differed from each other. In addition,
we assessed model performance on a per
species basis and evaluated effects due to
sample sizes Models for species 1 to 5 were
trained with < 18 sites, whereas models for
species 6 to 10 were trained with 22 to 47 sites
(Table 1).

RESULTS

Comparisons across modelling methods

Performance differed significantly among
modelling methods for all accuracy measures
considered (AUC, max Kappa, TSS, sensitivity,
and specificity; Table 3). In general, the rank
order of model performance varied considerably
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for each measure assessed (Fig. 1a-e). However,
multiple comparisons tests revealed that not all
rank-order differences were significant (Table
4). Overall, we found that three methods, ANN,
DOMAIN and Maxent, consistently performed
better than the remaining techniques in four of
the five accuracy measures. However, when it
came to predict percentage of absence evaluation
points, they lagged behind BIOCLIM in
accuracy (Fig. 1E; Table 4). GARP was the next
best ranked method, performing very well in
three out five accuracy measures. The remaining
modelling methods were less consistent in their
performance across accuracy measures, and also
showed higher variability within accuracy
measures.

TABLE 3

Results of the Friedman test for differences
among performance measures of the different

modelling methods.

Resultados de la prueba de Friedman para establecer
diferencias entre las medidas de precisión de los distintos

métodos de modelización.

Performance measure F P level

AUC 460.2 < 0.0001

max Kappa 395.5 < 0.0001

TSS 388.6 < 0.0001

Sensitivity 452.4 < 0.0001

Specificity 300.4 < 0.0001

Comparisons across species

In general, model performance at the species
level showed similar trends to the pooled
species models. ANN, DOMAIN, and Maxent
performed very well on a per-species basis for
all accuracy measures, except for Specificity,
followed by GARP, which performed well in
three of the five accuracy measures (Fig. 2A-E).

To assess how model performance varied
with sample size (i.e., the number of presence
records), we plotted the median and interquantile
range values for each species, and for each
modelling method (Fig. 3). In general, there was
not a clear trend between sample size and model
performance. Only a few modelling methods
showed a trend for some, but not all, of the
accuracy measures. For instance, BIOCLIM and
GAM improved their performance with larger
sample sizes when assessed by AUC, TSS, and
Sensitivity, whereas GARP showed this trend
for AUC, TSS, and Specificity (Fig. 3A-E).
ANN, DOMAIN, Maxent, and GARP showed
relative low within and across species variation
when assessed by AUC, TSS, and Sensitivity.

The lack of a clear trend between sample
size and model performance is also reinforced
by correlation analyses between sample size
and each accuracy measure. Although
significant, Spearman’s rank correlations were
very low (Table 5), and showed only a slight
increase in the values of performance measures
with sample size, with the exception of
specificity, which decreased with sample size.

TABLE 4

Multiple comparisons of modelling methods’ performance for each of the five accuracy measures
(post hoc tests of multiple comparisons; Dunn test). P < 0.05 indicates significant differences.

Accuracy measures of modelling methods represented with the same letter do not significantly differ.

Comparaciones múltiples del desempeño de los métodos de modelización para cada una de las cinco medidas de precisión
usada (prueba a posteriori de comparaciones múltiples; Dunn test). P < 0.05 indica diferencias significativas. Medidas de

precisión de los métodos de modelización representados por la misma letra no difieren significativamente.

AUC Kappa TSS Sensitivity Specificity

ANN a a a a b

BIOCLIM d b d d a

CART c c c c b

DOMAIN a b a a c

GAM b b b b b

GARP b e b a d

GLM c c b c b c b

MAXENT a a a a b



353MODELLING DISTRIBUTION OF PATAGONIAN INSECTS

Fig. 1: Box plots displaying the median, interquantile range, and maximum and minimum values of
accuracy measures (AUC, max Kappa, TSS, Sensitivity, and Specificity) for each modelling method.
Dashed horizontal line indicates the grand median. Note that Y axes have different scales and range.
Gráficos mostrando la mediana, rango intercuartil y los valores máximos y mínimos de las medidas de precisión (AUC,
max Kappa, TSS, Sensitivity, y Specificity) para cada método de modelización. La línea punteada horizontal indica la gran
mediana. Notar que los ejes Y tienen diferentes escalas y rangos.
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Fig. 2: Mean value of performance measure versus the rank of that measure when assessed on a per
species basis. Note that the Y axis is reversed in all plots, so that methods with better performance
are found in the upper right corner of the plots.
Valor promedio de la medida de desempeño versus el ranking de esa medida evaluada para cada especie. Notar que el eje Y
está revertido en todos los gráficos para que los métodos con mejor desempeño se ubiquen en la esquina superior derecha
del gráfico.
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Fig. 3: Box plots displaying the median, interquantile range, and maximum and minimum values of
accuracy measures (AUC, max Kappa, TSS, Sensitivity, and Specificity) for each modelling me-
thod and for each species. Species numbers are as in Table 1. Dashed horizontal line indicates the
grand median. Note that Y axes have different scales and range.
Gráficos mostrando la mediana, rango intercuartil y los valores máximos y mínimos de las medidas de precisión (AUC,
max Kappa, TSS, Sensitivity, y Specificity) para cada método de modelización y para cada especie. Los números de las
especies corresponden a los de la tabla 1. La línea punteada horizontal indica la gran mediana. Notar que los ejes Y tienen
diferentes escalas y rangos.
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TABLE 5

Spearman’s rank correlations (rs) between
sample size and the different performance

measures.

Correlaciones por rangos de Spearman (rs) entre tamaño de
muestra y las distintas medidas de precisión.

Performance measure rs P value

AUC 0.1092 < 0.01

max Kappa 0.1297 < 0.01

TSS 0.1290 < 0.01

Sensitivity 0.1014 < 0.01

Specificity -0.2201 < 0.01

DISCUSSION

Previous studies have shown that model
performance varies among different modelling
methods, depending on the species modelled,
the study area, and the sampling size (Manel et
al. 1999, Dettmers et al. 2002, Moisen &
Frescino 2002, Thuiller et al. 2003, Segurado &
Araújo 2004, Elith et al. 2006, Hernandez et al.
2006, Pearson et al. 2006, Tsoar et al. 2007).
Not surprisingly, our analyses also showed
significant differences among predictions
generated by various modelling techniques.
However, since the goal of this study is to use
predictive models of species distributions for
prioritizing areas for conservation, it is crucial
that we evaluate which modelling method is
better for the taxa being studied and for our
area of study. Although museum records
combined with predictive models of species
distribution have great potential value for the
conservation of biodiversity (Graham et al.
2004), uncritical use of these models may
misdirect conservation actions. Poor model
choice may lead to misrouted conservation
efforts (Loiselle et al.  2003, Johnson &
Gillingham 2004).

Model performance not only differed among
different modelling methods but also within
methods used to evaluate different species.
This variability in predictions makes it difficult
to identify the ‘best’ modelling technique
(Segurado & Araújo 2004, Pearson et al. 2006).
It has been suggested that the best modelling
methods are those that reduce the omission
error rate (Anderson et al. 2003). The argument

is that predicting unsuitable habitat where a
species is known to be present is a clear error,
whereas predicting suitable habitat where there
is no record of a species’ presence may be due
to insufficient sampling or other non-climatic
factors that limit its distribution (Anderson et
al. 2003, Pearson et al. 2006). This approach,
however, may be adequate when predicting the
ranges of invasive species that have not yet
colonized all suitable environments (Peterson
2003). In contrast, Loiselle et al. (2003)
suggest that if models are used to predict the
distribution of a particular species for
conservation purposes, they should not over-
predict areas of distribution so that unsuitable
sites for the protection of the species are
included. Thus, model assessments should
weigh the costs of making a false positive
prediction versus the costs of making a false
negative prediction depending on the intended
use of the model (Fielding & Bell 1997).
Multiple measures of model accuracy are
needed to evaluate relative model performance,
besides separately assessing their ability to
predict presences and absences (Fielding 2002,
Segurado & Araújo 2004, Bulluck et al. 2006,
Hernandez et al. 2006).

In all, our results showed that Maxent was
one of the best performing methods, as was
ANN. Maxent ranked first in four out the five
measures used to assess model accuracy;
although, its performance was not significantly
different from that of ANN. When assessed on
a per species basis, Maxent outperformed the
other methods in three out of the five accuracy
measures. In addition to its strong performance,
with the exception of max Kappa values, it was
very stable across species with different sample
sizes. Most importantly, Maxent performed
well with small sample sizes, which constituted
the majority of the species records in our
database. These results support the findings of
previous studies (Elith et al. 2006, Hernandez
et al. 2006, Pearson et al. 2007) that compared
several modelling techniques and found that
Maxent was one of the best performing
methods, even with sample sizes as low as five
positive observations (Hernandez et al. 2006,
Pearson et al. 2007).

ANN also performed well in this study.
However, other researchers comparing the
performance of different modelling methods
have found contradictory results regarding the
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accuracy of ANN. Whereas Segurado & Araújo
(2004) found ANN to be the highest-
performing method, Manel et al. (1999) found
ANN model performance to be comparable to
that of GLM. Unfortunately, in the most
comprehensive model comparison study to date
in which the predictive performance of 16
modelling techniques was assessed (Elith et al.
2006),  ANN was not included. Besides
performing slightly better, the advantage of
Maxent over ANN is that the former method
does not need absence data to generate a
predictive distribution model. It has been
suggested that the success of Maxent may be
due to its regularization procedure that prevents
or allows overfitting depending on whether a
few or many training data points are used,
respectively, to build the model (Dudik et al.
2004, Phillips et al. 2004, Phillips et al. 2006,
Hernandez et al. 2006). Thus, given its strong
performance and simplicity of use, we believe
that Maxent is the best option for our larger
project.

Another method that performed relatively
well in this study was DOMAIN. Its
performance was among the best, as judged by
three of the five measures of accuracy.
However, although it correctly predicted a high
proportion of presences, it did not predict
absences as well. A similar situation occurred
with GARP, which had the lowest value for
specificity. This method performed relatively
well in three of the five accuracy measures, but
it  performed the worst according to the
remaining two. In general, GARP performed
somewhat better than GAM, and the latter
outperformed GLM and CART. Previous model
comparison studies have found GAM to
perform better than GLM (Franklin 1998,
Pearce & Ferrier 2000, Thuiller et al. 2003).
Segurado & Araújo (2004) found CART to
perform better than GLM, but not significantly
better than GAM. Finally, although BIOCLIM
correctly predicted a high proportion of the
absences, in general,  i t  was the poorest
performing method, particularly for species
with a low number of locality records. This
finding is consistent with other studies in which
BIOCLIM had a poor performance compared to
other methods (Elith et al. 2006, Hernandez et
al. 2006).

Overall, we can broadly identify four groups
of modelling techniques in our study of model

performance. First, the top-performing group is
composed of Maxent and ANN, followed
closely by the second group, DOMAIN. The
third group includes GARP, GAM, GLM, and
CART which is followed by BIOCLIM. These
results should be viewed as recommendations
only applicable to the taxa modelled (insects),
and for the study area under consideration.
Importantly, model techniques cannot replace
good data when the purpose is to delimit the
realized distributions of species (Lobo 2008).
Distribution models are rarely used in the case
of invertebrates, but this group of species
harbour most of the recognized species and
their data are rarely used for conservation
purposes. Lack of data, survey bias, and
restricted distributions are common
characteristics in the case of insects and
distribution simulations, although of
provisional nature, are the only available
procedure able to quickly provide relatively
reliable distributional estimations that can be
validated in the future.

However, the recommendations provided by
our study should be considered with caution
because some caveats can influence our results.
First and importantly, modelling methods differ
in their capacity to represent the potential-
realized distribution gradient (Jiménez-
Valverde et al. 2008) and comparisons among
techniques must consider both this question and
the quality of the data used as dependent
variable. When reliable absences are lacking
modelling exercises generate geographical
representations located between the potential
and realized distribution of species. The models
obtained that require presence-absence data
(i.e. ANN, CART, GAM, and GLM) were
calculated using pseudo-absences outside the
environmental domain of presences. This
procedure artificially increase the statistical
power of group discrimination techniques
(Guisan & Zimmermann 2000, Graham et al.
2004),  allowing obtaining geographic
representations closer to the potential
distribution of species (Jiménez-Valverde et al.
2008) and so, able to include the species in
some not colonized localities. This can lead to
high values of AUC and specificity but also
high commission errors (Lobo 2008). Second,
our models have been validated using a
different kind of pseudo-absences previously
defined by an expert taxonomist. Ideally,
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validation data should be independent of the
data used to generate the model (Fielding &
Bell 1997),  although this is practically
impossible for Natural History Collection data
(Graham et al. 2004). Our procedure is not
exempt of error since the suggestions based on
the knowledge and collecting experience of
taxonomists can be biased (see Seoane et al.
2005). These drawbacks outline the fact that
distributions models are simply hypotheses of
the real distributions of the species and cannot
replace a well designed field collection of
species data.
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