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ABSTRACT

Since 1989, we have conducted a large-scale ecological experiment in semiarid thorn scrub of a national park
in north-central Chile. Initially, we focused on the role of biotic interactions including predation, interspecific
competition, and herbivory in small mammal and plant components of the community. We utilized a
reductionist approach with replicated 0.56 ha fenced grids that selectively excluded vertebrate predators
and/or larger small mammal herbivores such as the degu, Octodon degus. Although we detected small
transitory effects of predator exclusions on degu survival and numbers, other species failed to show
responses. Similarly, interspecific competition (i.e., degus with other small mammals) had no detectable
numerical effects (although some behavioral responses occurred), and degu-exclusions had relatively small
effects on various plant components. Modeling approaches indicate that abiotic factors play a determining
role in the dynamics of principal small mammal species such as O. degus and the leaf-eared mouse (Phyllotis
darwini). In turn, these are mainly related to aperiodic pulses of higher rainfall (usually during El Niño
events) which trigger ephemeral plant growth; a food addition experiment in 1997-2000 verified the
importance of precipitation as a determinant of food availability. Since 2004, we have expanded long-term
monitoring efforts to other important community components including birds and insects in order to
understand effects of abiotic factors on them; we report some of the first results of comprehensive surveys
on the former in this region. Finally, we recently shifted focus to documenting effects of exotic lagomorphs
in the park. We installed additional treatments selectively excluding small mammals, lagomorphs, or both,
from replicated grids in order to evaluate putative herbivore impacts. In conjunction with increased annual
rainfall since 2000, we predict that introduced lagomorphs will have increasing impacts in this region, and
that more frequent El Niños in conjunction with global climatic change may lead to marked changes in
community dynamics. The importance of long-term experimental studies is underscored by the fact that only
now after 20 years of work are some patterns becoming evident.
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RESUMEN

Desde 1989 hemos llevado a cabo un experimento ecológico a gran escala en un matorral espinoso semiárido
de un parque nacional en el norte de Chile. Inicialmente, nos centramos en el rol de las interacciones
bióticas incluyendo depredación, competencia interespecífica y herbivoría en micromamíferos y
componentes vegetales de la comunidad. Usamos una aproximación reduccionista con parcelas replicadas
cercadas de 0.56 ha que selectivamente excluían depredadores vertebrados y/o micromamíferos herbívoros
más grandes como el degu, Octodon degus. Aunque detectamos efectos transitorios menores en la
sobrevivencia y número de degus en las exclusiones de depredadores, otras especies no mostraron
respuestas. Similarmente, la competencia interespecífica (i.e., degus con otros micromamíferos) no tenía
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efectos numéricos detectables (aunque ocurrieron algunas respuestas conductuales), y las exclusiones
tuvieron efectos relativamente pequeños en varios componentes vegetales. Aproximaciones basadas en
modelos indican que los factores abióticos juegan un papel determinante en la dinámica de las especies de
micromamíferos principales como O. degus y la laucha orejuda (Phyllotis darwini). En cambio, estos están
principalmente relacionados a pulsos no periódicos de lluvias más altas (usualmente durante los eventos El
Niño) que gatilla el crecimiento de plantas efímeras; un experimento de adición de alimento en 1997-2000
verificó la importancia de la precipitación como un determinante de la disponibilidad de alimento. Desde el
2004 hemos expandido los esfuerzos de monitoreo de largo plazo a otros componentes comunitarios
importantes incluyendo aves e insectos con el fin de entender los efectos de los factores abióticos sobre
ellos; informamos algunos de los primeros resultados de censos comprehensivos de aves en esta región.
Finalmente, hace poco cambiamos de foco para documentar el efecto de lagomorfos exóticos en el parque.
Instalamos tratamientos adicionales excluyendo selectivamente micromamíferos, lagomorfos, o ambos, de
parcelas replicadas con el fin de evaluar impactos de herbívoros. En conjunto con el aumento de la
precipitación anual desde 2000, predecimos que los lagomorfos introducidos tendrán mayores impactos en
esta región y que más frecuentes El Niño en combinación con el cambio climático global puede conducir a
cambios marcados en la dinámica comunitaria. La importancia de experimentos de largo plazo es destacado
por el hecho que solamente ahora después de 20 años de trabajo algunos patrones están siendo evidentes.

Palabras clave: aves, desierto chileno, LTER, micromamíferos, plantas efímeras.

INTRODUCTION

The historical debate on the relative
importance of biotic interactions such as
predation, competition, and herbivory vs.
abiotic factors such as climate, has been
contentious in population and community
ecology (e.g., Nicholson 1933, Andrewartha &
Birch 1954, Sinclair 1989, Turchin 1995, 2003).
Although the present consensus is that both
biotic and abiotic factors are important, it
generally is accepted that biotic factors tend to
operate in a density-dependent manner
whereas abiotic ones do not. Thus, the former
have the potential to regulate population
density within a range of dynamic equilibria,
whereas the latter may increase population
variability outside that range (Sinclair 1989,
Turchin 2003).

The emphasis on biotic interactions as a
central mechanism controlling populations
culminated in the 1980’s and 1990’s with a call
for multifactorial and reductionist approaches
to studying field organisms (e.g., Lubchenco
1986, Roughgarden & Diamond 1986,
Schoener 1986). At the same time, greater
emphasis was put on ecological scale and the
importance of studies over larger spatial and
temporal scales (e.g., Wiens 1986, 1989, Wiens
et al. 1986, Levin 1992). The issue is not
whether any one scale in space or time is
«correct,» but rather understanding exactly
what is being measured at a particular scale in
studying ecological phenomena (Levin 1992).
Field manipulations need to be conducted at a

scale which adequately distinguishes between
changes in local membership and population
levels, and those occurring at interhabitat or
regional levels (Wiens 1989). Determining the
appropriate scale requires an intimate
knowledge of organismal biology, including
dispersal and long-term population structure.
The issue of scale becomes even more crucial
when estimating the potential effects of very
large-scale processes such as global climate
change on smaller scale phenomena such as
local and regional biodiversity,  biotic
interactions, and community structure and
energetics (e.g.,  Risser et al .  1988,
Woodmansee 1988, Field et al. 1992, Kareiva et
al. 1992, Peters & Lovejoy 1992, Wessman
1992).

An increasing number of studies have
investigated the effects of climatic forces on
population dynamics (e.g, Leirs et al. 1997,
Forchhammer et al. 1998, Grenfell et al. 1998,
Lima et al. 1999a, 1999b, 2001a, 2001b, 2002a,
2002b, 2006, Coulson et al. 2001, Loeuille &
Ghil 2004), and show the joint effects of
endogenous and exogenous forces on
dynamics of natural populations. Nonetheless,
it is clear that in some instances exogenous
factors (i.e., climate) are of major importance.
For various organisms, feedback structure and
climatic forces are key elements to understand
numerical fluctuations (Royama 1992, Turchin
1995, Berryman 1999). Further, although
linear feedback effects have traditionally been
emphasized, nonlinear effects may be the rule
rather than the exception (e.g., Stenseth et al.
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1997, Grenfell et al. 1998, Bjørnstad et al. 1998,
Berryman 1999, Kristoffersen et al. 2001,
Coulson 2004), and they have increasingly
been verif ied (e.g.,  Sæther et al .  2000,
Mysterud et al. 2001, Stenseth et al. 2002,
2004, Ellis & Post 2004, Lima et al. 2006,
Berryman & Lima 2007).

With evidence increasingly compelling for
climatically-induced environmental change,
global climatic change (GCC) has become a
major focus in ecology. There is no longer
doubt that major anthropogenically-induced
alterations in organismal distributions,
abundance, and dynamics are occurring (e.g.,
Walther et al. 2002, 2005, Parmesan 2006,
Bodkin et al. 2007, IPCC 2007). Increased
frequency, duration, and magnitude of El Niño
events are one facet of ongoing GCC (Latif et
al. 1998, Timmermann et al. 1999, Mann et al.
2000, Diaz et al. 2001, Herbert & Dixon 2002);
although dispute about linkages persists (e.g.,
Rajagopalan et al. 1997, Kirtman & Schopf
1998, Kleeman & Power 2000, Stenseth et al.
2003), GCC may have already altered the El
Niño Southern Oscil lation (ENSO)
phenomenon (Fedorov & Philander 2000, Kerr
2004, Wara et al. 2005) with current weather
patterns reflecting the combination of natural
variability and a changing baseline. Several
stepwise shifts in climate appear to have
occurred in the past 30 years. The eastern
Pacific Ocean warmed around 1976 (CLIVAR
1992), and between 1976 and 1998, El Niño
events were larger, more persistent and more
frequent; the two largest El Niño of the 20th

century occurred in this period. In western
South America (especially NW Peru and
semiarid north-central Chile) increasing
rainfall tends to occur during El Niño Southern
Oscillation (ENSO) warm phases; low rainfall
occurs in other regions such as in Australia
and southern Africa. The implications of
ENSO-driven changes in precipitation for
semiarid regions are multiple (reviews in
Jaksic 2001, Holmgren et al. 2006a, 2006b).
Elevated rainfall in semiarid Chile leads to
dramatic increases in ephemeral plant cover
(Dillon & Rundel 1990, Gutiérrez et al. 1997,
Vidiella et al. 1999, Block & Richter 2000),
although it often decreases during succeeding
years of multiyear El Niño/high rainfall
events,  suggesting nutrient l imitation
(Gutiérrez et al. 1997, de la Maza et al. 2009).

Other groups increase dramatically following
El Niño including small mammals (e.g.,
Jiménez et al. 1992, Meserve et al. 1995, Lima
& Jaksic 1998a, 1998b, 1998c, Lima et al.
2001a, 2001b, 2002a, 2002b, 2006), vertebrate
predators (Jaksic et al. 1993, 1997, Arim &
Jaksic 2005, Arim et al. 2006, Farias & Jaksic
2007), and birds (Jaksic & Lazo 1999). The
responses appear due to upward-cascading
effects of rainfall on productivity in regions
which normally are arid (Holmgren et al. 2001,
2006a). Similar patterns hold for plant and
animal groups where unusually high rainfall
occurs during El Niño (e.g., North America,
Brown & Ernest 2002, DeSante et al. 2003) or
La Niña years (e.g., Australia, Letnic et al.
2004, 2005). Negative biological consequences
of more frequent El Niño/high rainfall events
may include the emergence or increased
prevalence of certain pathogens as a result of
more abundant vectors, reservoirs,  and
transmission agents (Kovats et al.  1999,
Epstein 1999, 2000, Epstein & Mills 2005).
Finally, another negative consequence of GCC
and more frequent El Niño events may be a
greater impact of introduced species (e.g.,
Arroyo et al. 2000, Hobbs & Mooney 2005,
Parker et al. 2006, Gutiérrez et al. 2007).

Although many authors have emphasized
the need for long-term and manipulative field
experiments in ecology (e.g., Likens 1989,
Risser 1991, Cody & Smallwood 1996), to date
there are relatively few such studies. We have
maintained a field manipulation in a semiarid
scrubland in north-central Chile for more than
20 years, making this the longest such study in
temperate South America. The emphasis of the
study has been modified as incoming data
suggested important new directions for
research. It began as a study on the relative
importance of two forms of biotic interactions
(competition vs. predation), but with the onset
of the 1991-92 El Niño event,  the
overwhelming importance of abiotic factors on
this semiarid system became clear. We have
now tracked small  mammals and plants
through multiple El Niño/high rainfall periods,
with similar (albeit not identical) biotic
responses. Recent studies on seed
consumption, however, have underscored the
importance of birds (Kelt et al. 2004a, 2004b,
2004c), and observations have indicated that
they also are strongly influenced by both
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abiotic and biotic influences, and possibly by
our field manipulations as well.

The history of population and community
ecology has shown that single factor or
simplistic explanations for major phenomena
often fail to endure. In community ecology,
studies that emphasize multiple biotic
interactions and both indirect and direct
effects have become increasingly important
(e.g., Strauss 1991, Menge 1995, Abrams et al.
1996). Notable examples are studies of
herbivore and/or granivore interactions with
plants and/or seeds (e.g., McNaughton 1976,
Brown et al. 1986, Brown & Heske 1990,
Brown 1998), inter-guild interactions and
plants and/or seeds (e.g., Davidson et al. 1984,
1985, Brown et al. 1986, Guo et al. 1995,
Ostfeld et al. 1996, Brown 1998), and effects of
predators on prey and the role of food (e.g.,
Taitt & Krebs 1983, Desy & Batzli 1989, Krebs
et al. 1995).

We have argued that ecological dynamics
at our site shift between “top-down” and
“bottom-up” control with important roles for
both biotic and abiotic factors (Meserve et al.
2003). This may be possible in part because
this region is a highly variable semiarid
environment. Whereas the role of biotic
interactions may receive more attention
because of tractability for manipulation, our
work shows that abiotic factors also are very
important in this system, and deserve more
attention in ecological studies generally
(Dunson & Travis 1991, Karr 1992). Our study
is helping to clarify the important role of such
abiotic factors when superimposed on a suite
of biotic interactions; it is largely the long-term
baseline that our study affords that provides us
with insights into the relative roles of these
influences.

Work at our site provides important
baseline data for interpreting long-term
changes in semiarid Chile but has important
implications for other arid and semiarid
systems. Over the last 1,000 years, rainfall in
northern Chile has declined within a more
gradual aridity trend (Bahre 1979, Villalba
1994). Rainfall in the park averaged 209 mm
year-1 in 1940-49, 185 mm in 1960-69, 127 mm
in 1970-79, 85 mm in 1980-89, and 113 mm in
1990-99 (Kummerow 1966, Fulk 1975,
Gutiérrez 2001). Although there has been little
change in small mammal assemblage and

shrub cover at Fray Jorge over 50 years, El
Niño-related outbreaks of small mammals and
effects on agriculture have become more
dramatic elsewhere (e.g., Pearson 1975, Péfaur
et al. 1979, Fuentes & Campusano 1985,
Jiménez et al. 1992, Jaksic & Lima 2003). The
surrounding north-central semiarid region
(“Norte Chico”) has become highly desertified
(Bahre 1979, Schofield & Bucher 1986), with
44 % of ca. 3.5 million ha of the IV Region
(within the Norte Chico) characterized as
“sterile” by the mid-1970s due to overgrazing,
overcutting, and neglect (Ovalle et al. 1993).
Desertification has occurred at a rate of about
0.4-1.4 % year-1 (Bahre 1979); by the early
1990’s, less than 0.1 % of the Norte Chico was
cultivated, and unrestricted grazing and
fuelwood collection continued in the
predominantly rural areas (Ovalle et al. 1993).
Interestingly, El Niño events may offer
opportunities for restoration of such systems
(Holmgren & Scheffer 2001). However, until
recently, little was known about the dynamics
of plant-animal interactions here (but see
Armesto et al. 1993, Gutiérrez 1993, 2001,
Ovalle et al .  1993, Whitford 1993).
Consequently, northern Chile and this study in
particular,  provide important sources of
baseline data for ecologists as well  as
conservation and restoration biologists.

STUDY AREA AND METHODOLOGY

In 1989, we began a large-scale manipulation in
Bosque Fray Jorge National Park (71°40’ W,
30°38’ S; Fray Jorge hereafter), a 10,000 ha
Biosphere Reserve in the north-central Chilean
semiarid zone. The park contains semiarid
thorn scrub vegetation and remnant fog forests
that have been protected from grazing and
disturbance since 1941 (Squeo et al. 2004). The
thorn scrub includes spiny drought-deciduous
and evergreen shrubs and understory herbs on
a primarily sandy substrate (Muñoz & Pisano
1947, Muñoz 1985, Hoffmann 1989, Gutiérrez et
al. 1993a). The climate is semiarid
Mediterranean with 90 % of the mean annual
133 mm (average between 1989 and 2008)
precipitation falling in winter months (May-
Sept.), and warm, dry summers. Since 1989,
there have been five El Niño/high rainfall
events in this region: 1991-92 (233-229 mm),
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1997 (330 mm), 2000-2002 (236-339 mm), 2004
(168 mm), and 2006 (147 mm); intervening
years have been dry (11 to 89 mm).

Based on earlier work (e.g., Meserve
1981a, 1981b, Meserve et al. 1983, 1984, 1987,
Meserve & Le Boulengé 1987), we initially
focused our attention on the role of biotic
interactions in the community, specifically,
vertebrate predation, small mammal herbivory,
and interspecific competition among small
mammals. Much of our earlier interest has
been on the biology of an important herbivore,
Octodon degus (Molina, 1782) (degu), a
medium-sized (ca. 120-150 g) caviomorph
rodent characteristic of Mediterranean Chile;
Fray Jorge is near the northern limits of the
degu’s range. Other small mammals include
the uncommon Abrocoma bennetti Waterhouse,
1837 (150-250 g) and several smaller (20-80 g)
omnivorous to granivorous/insectivorous
species such as Abrothrix olivaceus
(Waterhouse, 1837), A. longipilis (Waterhouse,
1837), Phyllotis darwini (Waterhouse, 1837),
Oligoryzomys longicaudatus (Bennett, 1832),
and Thylamys elegans (Waterhouse, 1839)
(Meserve 1981a, 1981b). Principal small
mammal predators include owls (Tyto alba
[Scopoli, 1769], Athene cunicularia [Molina,
1782], Bubo magellanicus [Lesson, 1828],
Glaucidium nanum [King, 1828]) and the
culpeo fox (Lycalopex culpaeus [Molina, 1782];
Fulk 1976a, Jaksic et al. 1981, 1992, 1993, 1997,
Meserve et al. 1987, Salvatori et al. 1999).
Other predators are snakes (Philodryas
chamissonis [Wiegmann, 1835]) and a large
teiid lizard (Callopistes maculatus Gravenhorst,
1838; Minn 2002, Jaksic et al. 2004). Numbers
of predators are unusually high because the
park contains the largest remaining intact
scrub habitat in north-central Chile (Bahre
1979).

The initial experimental complex consisted
of 16 small mammal live-trapping grids (75 x
75 m = 0.56 ha) in thorn scrub habitat in an
interior valley of the park (“Quebrada de las
Vacas,” 240 m elev.; “central grid complex” in
Fig. 1) previously studied by Fulk (1975,
1976a, 1976b), Meserve (1981a, 1981b), and
Meserve & Le Boulengé (1987). The original
design included four treatments each with four
randomly assigned grids: 1) controls, with low
(1.0 m h) 2.5 cm mesh fencing buried ca. 40
cm with 5 cm d holes at ground level to

provide access by all small mammals and
predators (+D +P); 2) predator exclusions,
with tall (1.8 m h) 5 cm mesh fencing buried
40 cm, 1 m overhangs, and polyethylene mesh
(15 cm) netting overhead, excluding predators
but allowing small mammal access (including
degus; +D -P); 3) degu exclusions, with low
(1.0 m h) 2.5 cm mesh fencing without holes to
exclude degus but not other small mammals or
predators (-D +P); or 4) degu & predator
exclusions, with tall (1.8 m h) 5 cm mesh
fencing, with high overhangs, and netting to
exclude predators, supplemented with 2.5 cm
fencing to exclude degus (-D -P).  Our
manipulations have utilized a long-term “press”
approach (sensu Bender et al .  1984) to
examine these biotic interactions. Sampling
methods are as follows (see also Meserve et al.
1993a, 1993b, 1995, 1996, Gutiérrez et al.
1993a, 1993b, 1997, Jaksic et al. 1993, 1997): 1)
Small mammals are trapped for four days/
month/grid (5 x 5 stations, 15 m interval, two
traps/station). We estimate population size
with minimum number known alive (MNKA;
Hilborn et al. 1976). 2) Perennial shrub cover
is measured every three month with four
permanent 75 m parallel transects/grid and
point intercept method (0.5 m intervals). 3)
Ephemeral (annuals + geophytes) cover is
measured monthly in the growing season
(April-Aug. to Oct.-Dec.) on 10 random 1.5 m
segments subdivided into 30 points (5 cm
intervals) on the transects. 4) Soil samples (n =
20 random samples [3 cm d x 5 cm depth =
35.35 cm3] grid-1) are collected every four
month. 5) Fox scats and owl pellets are
collected monthly from the site and nearby
roosts; predators are monitored monthly with
sightings and olfactory lines.

We have employed various approaches to
data analysis. Initially, we used repeated
measures analysis of variance (rmANOVA,
PROC GLM; SAS 1990a, 1990b, Potvin et al.
1990, von Ende 2001), and mixed model
rmANOVA (PROC MIXED; Wolfinger &
Chang 1995, SAS 1996). Small  mammal
survivorship was analyzed with PROC
LIFETEST (SAS 1990b) and nonparametric
log-rank tests (Lee 1980, Fox 2001). Results of
analyses on small mammals and predators
were reported in Jaksic et al. (1993, 1997),
Meserve et al. (1993a, 1993b, 1995, 1996, 1999,
2001, 2003), and Milstead (2000).
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Recently (Previtali 2006) we investigated
the effects of predator/competitor exclusions
using Log Response Ratios (LRRs), calculated
as the log of the ratio of the density of the
target species in the competitor or predator
exclusion treatment over its density in the
control (LRR = Ln (Nt exclusion / Nt control);
Schmitz et al. 2000, Berlow et al. 2004). We
assumed that biotic interactions (competition,
predation) would vary depending on the
duration of wet or dry phases since this relates
directly to resource availability. Consequently,
we categorized each year based on whether

Fig. 1: Location of study area, grids and major habitats in Fray Jorge. Light shaded areas are
predominantly thorn scrub habitat. Sixteen grids in the “central grid complex” have been used
since 1989; “supplemental grids” located in other habitats (i.e., fog forest, aguadas + quebradas)
were sampled during 1996-2003. “New experimental grids” were added in 2007-2008 and target
lagomorphs with and without small mammal exclusions.

Ubicación del área de estudio, parcelas y hábitats principales en Fray Jorge. Áreas con sombreado claro son
predominantemente hábitat de arbustos espinosos. Desde 1989 se han usado dieciséis parcelas en el “complejo de
parcelas centrales”; “parcelas adicionales” ubicadas en otros hábitats (i.e., bosque de neblinas, aguadas + quebra-
das) se muestrearon durante 1996-2003. “Parcelas experimentales nuevas” se agregaron en 2007-2008 con exclusio-
nes de lagomorfos y micromamíferos.

wet vs. dry conditions (i.e., above- or below-
average rainfall, respectively) prevailed in that
year and the preceding year. Thus, we defined
each year as part of a Dry-Dry, Dry-Wet, Wet-
Wet, or Wet-Dry phase. Given the lag in
demographic responses to resource
availability, we posited that Dry-Wet years
would have high resource availability (the wet
year) but low population densities (due to the
preceding dry year). Similarly, Wet-Dry years
should have low resources (current, dry year)
but high population densities (in response to
the preceding wet year), and so on.
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treatments (log-transformed; Gutiérrez &
Meserve 2000).

Prior to manipulations we documented no
significant between-treatment differences
(small mammals: pre-test period = March-May
1989; plants: 1989). Plant nomenclature follows
Marticorena & Quezada (1985).

RESULTS AND DISCUSSION

Effects of predation on small mammals

O. degus responded positively to predator
exclusions (Previtali 2006), with greater LRRs
during prolonged droughts (i.e., Dry-Dry
years, 1994-1996, and 1999; Fig. 2). Other

Fig. 2: Population trends for three small mammals in Fray Jorge during 1989-2007. Treatments
indicated by symbols and letters (+/- D = presence or absence of degus; +/- P = presence or
absence of predators).

Tendencias poblacionales de tres micromamíferos en Fray Jorge durante 1989-2007. Los tratamientos están indica-
dos por símbolos y letras (+/-D= presencia o ausencia de degus; +/-P= presencia o ausencia de depredadores).

We assessed behavioral (foraging)
responses to predator removal with “giving up
densities” from foraging trays (Yunger et al.
2002, Kelt et al. 2004a, 2004b, 2004c). This
allowed us to evaluate whether experimental
treatments have had functional effects of small
mammal foraging independent of their
numerical responses to manipulation of
predator and/or interspecific competition.

For plant responses, we estimated cover
(angular transformed) and seed densities (log-
transformed) and used annual peak values
(due to varying length of the annual growing
season) to allow balanced between-year
analyses with rmANOVA (Gutiérrez et al.
1997). Elsewhere we compared plant densities
and biomass across our experimental
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species (Phyllotis and A. olivaceus) showed
only slight or even negative effects of predator
exclusion. Degu survival probabilities were
significantly greater on exclusions than control
grids (Previtali 2006). Although we have
documented behavioral changes in Octodon
and other species under predator exclusion
conditions (Lagos 1993, Lagos et al. 1995,
Yunger et al. 2002, 2007, Kelt et al. 2004a),
these often are not manifested in numerical
responses to predation.

Predator numbers and diets

Both owl and fox diets are dominated by O.
degus, Phyllotis, and Abrocoma (Jaksic et al.
1993, 1997, Silva et al.  1995). Predators
showed numerical responses to changes in
prey abundance, with increases after El Niño
events and declines as prey decreased (Jaksic
et al. 1997, Salvatori et al. 1999). Foxes and
some owls were more omnivorous at low small
mammal levels with increased importance of
insects (G. nanum, A. cunicularia: Silva et al.
1995) and seeds + fruits (L. culpaeus: Castro et
al. 1994).

Effects of competition by Octodon on other small
mammals

Octodon  negatively impact trophically-
dissimilar species such as A. olivaceus
(Meserve et al. 1996, Yunger et al. 2002, Kelt
et al. 2004a, Previtali 2006), Oligoryzomys
(Milstead 2000), and Thylamys (Meserve et al.
2001). Surprisingly, degus may have a
facilitative influence on Phyllotis; this species
exhibited higher densities in controls than
degu exclusions.

Effects of herbivores and predators on plants

Vegetative responses to herbivore (i.e., degus)
and/or predator exclusions have been
heterogeneous (Gutiérrez et al .  1997,
Gutiérrez & Meserve 2000). Perennial cover
showed no significant treatment responses,
but diversity increased on degu exclusions.
Some species showed greater cover in plots
excluding degus (i.e., Baccharis paniculata
DC., Chenopodium petiolare  H.B.K.) or
predators (i.e., Proustia cuneifolia D. Don).
Chenopodium petiolare  is a suffructicose

perennial and an important degu food
(Meserve 1981b, 1983, 1984). Ephemerals
(annuals + geophytes) showed no significant
main treatment effects on cover or diversity,
but total biomass was significantly higher in
plots accessible to degus and predators
(Gutiérrez & Meserve 2000). Overall ,
consumptive effects of degus were relatively
small ,  whereas their indirect activit ies
appeared to increase ephemeral biomass. Seed
densities of annual species, including those of
Erodium and Moscharia pinnatifida R. et P.,
were higher in degu-access grids (Gutiérrez et
al. 1997). Widespread, adventitious herbs (e.g.,
Erodium) may be facilitated by disturbance
due to runway development and activity as well
as digging under bushes.

Thus, degus appear to exert complex
effects including both depression and
facilitation of plants and seeds. However, the
effects of other rodents (most notably Phyllotis
and A. olivaceus, which comprised 74.8 % of
individuals captured of the three most
common species) could not be separated from
those of degus, suggesting density or
energetic compensation (re Ernest & Brown
2001a, 2001b). Given this limitation, in 2001 we
converted four former degu & predator
exclosures (-D -P) to all -small  mammal
exclosures (-SM) by removing the original
netting and fencing, and installing 1.5 m h 0.25
inch hardware cloth fencing topped with ca. 20
cm metal flashing. These plots were selected
because they had shown the least vegetative
changes in over 12 yrs. Trapping procedures
remained identical, but captured animals were
marked and then released ~1 km away.
Although not completely effective, all-small
mammal exclusions have reduced most
species to 23.4 ± 9.8 % (±SE) of control
populations since 2002. Some plants responded
immediately and dramatically. In the first year
of these treatments, cover by Plantago
hispidula R. et P. increased to ca. four times
that in control grids. Although this species is
an important food of herbivorous rodents in
the study area (Meserve 1981b), seed
densities were similar in –SM and control
treatments. Consequently, the best explanation
for the increase of P. hispidula here and not in
degu exclusion grids was absence of herbivory
by non-degu species, most l ikely the
herbivorous Phyllotis. However, this difference
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in cover was not maintained in subsequent
years, so the general importance of this effect
is not clear to us. Another immediate response
was that Adesmia bedwellii  Skottsb.,  a
perennial shrub comprising ~8 % of shrub
cover at our study site, produced significantly
more new leaves and buds in –SM plots. Other
shrubs (e.g., Porlieria, Proustia) have not
shown these responses, indicating that small
mammal impacts on perennial shrub species
were selective. Overall, effects of excluding
native small mammals have been relatively
small. We currently are investigating other
aspects such as plant community responses to
rainfall events (Gaxiola et al. unpublished
data). Using a 20-year datastream on annual
plants and climatic factors at Fray Jorge,
Gaxiola et al. (unpublished data) documented
that annual plant cover (a proxy of
productivity) was strongly enhanced by
community evenness but not by species
richness. Years with > 100 mm rainfall led to
linear increases in community evenness,
whereas species richness saturated by 100
mm. Annual rainfall and species richness
exerted strong indirect effects on annual plant
cover via community evenness. These authors
concluded that community evenness is
relevant for explaining climate-driven changes
in productivity of semiarid areas, where
increased variability in rainfall is predicted by
global climate models.

Effects of ENSO on small mammals and plants

Our initial field design assumed a central
ecological role of biotic interaction. However,
it is apparent that understanding the impact of
abiotic factors is fundamental to interpreting
long-term trends. The five El Niño/high
rainfall events recorded since 1989 (shaded in
Fig. 2) are natural “pulse” experiments that
trigger large increases in plant and small
mammal populations and thus, alter the role of
biotic vs. abiotic factors in the community.
Data from control grids provide insights to
organismal responses to these events
(Meserve et al. 1995, 1999, 2003, Gutiérrez et
al. 1997, 2000a, 2000b, Gutiérrez & Meserve
2000, Previtali 2006). For example, of 401,861
captures of 69,029 individuals of 10 small
mammal species on all grids through April
2009, 23.5 % and 24.1 %, respectively, have

been on controls. Of these, 56.4 % and 65.7 %
(captures and individuals, respectively) have
occurred during high rainfall  periods
comprising only 39.7 % of the 242 month of
study. Although responses of small mammal
species to rainfall events differ in timing, they
are similar in being 2-3 orders of magnitude in
both numbers and biomass (Meserve et al.
2003), which contrasts strongly with patterns
for North American arid/semiarid systems
where relative stabil ity in numbers and
biomass of small mammals over time suggests
homeostasis (Ernest & Brown 2001a).

Spatial  dynamics are pivotal to
understanding patterns in our system
(Meserve et al. 1999, Milstead 2000, Milstead
et al. 2007). In thorn scrub, O. degus, Phyllotis,
and Thylamys are resident “core” species that
occur in all surveys. A. olivaceus is a “quasi-
core” species, almost always present but with
explosive increases after high rainfall years.
“Opportunistic species” (e.g., Oligoryzomys, A.
longipilis) disappear from thorn scrub during
drought periods but persist in peripheral
habitats such as “aguadas” and quebradas
(areas with mesic vegetation and/or standing/
subsurface water) and fog forest on coastal
ridges (“supplemental grids” Fig. 1). Milstead
(2000) verified haplotypic variation among
some taxa such as Phyllotis and Oligoryzomys in
different habitats within the park, suggesting
spatial isolation at a rather small scale, at least
during dry periods.

Plants also have shown heterogeneous, and
in some cases dramatic, responses to ENSO/
high rainfall events (Gutiérrez et al. 1997,
2000a, 2000b, Gutiérrez & Meserve 2003; Fig.
3). Perennial cover only varied from 48.5 % to
64.4 % in 20 years, similar to values of 50 and
35 years ago (Muñoz & Pisano 1947, Meserve
1981a, Gutiérrez et al. 1993a). In contrast,
ephemeral cover varied from 0 % during a La
Niña event (1998, 11 mm ppt.) to 80-86 %
during El Niño/high rainfall years (1991, 1997,
2002). Decreases during ensuing years of
multiyear high rainfall events (i.e., 1992, 2001-
02) suggest nutrient depletion (Gutiérrez et al.
1993b, 1997). Maximum seed densities
reached 41,832 m-2, similar to North American
deserts (Inouye 1991), but they do not track
rainfall as closely as does ephemeral cover
(Gutiérrez & Meserve 2003). Similar
responses have been documented elsewhere in
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semiarid Chile (Dillon & Rundel 1990,
Gutiérrez et al. 2000a).

In summary, we have documented some
biotic responses to predation, competition, and
herbivory, but interactions vary among species
and over time. Predation appears to affect
numbers and survival of some core species,
but has weak or no effects on opportunistic
ones. Interspecific competition generally
appears weak among small mammals although
there is evidence for behavioral interactions.
Herbivore effects are heterogeneous, with
both negative and positive responses to degu
exclusions as well as some indirect (positive)
effects of predators. In contrast, responses of
both plants and animals to abiotic factors
related to El Niño/high rainfall events are
dramatic, implicating the importance of pulsed
resources (e.g., Ostfeld & Keesing 2000, Stapp
& Polis 2003); similar responses have been
documented in North American deserts
(Valone & Brown 1996), but these studies
contrast markedly with ours in documenting
strong effects of small mammal granivores in
North America (e.g., Brown et al. 1986, Brown
& Heske 1990a, 1990b; Curtin et al. 2000) or a

relatively minor role for precipitation vs. biotic
interactions there (Ernest et al. 2000, Brown &
Ernest 2002).

ON-GOING STUDIES

Ongoing studies at our site have developed as
data allowed us to refine or refocus our
attention. As noted above, we initially argued
for a “shifting control” view of the relative
importance of various biotic and abiotic factors
in this system (Meserve et al. 1999, 2001, 2003,
Gutiérrez et al. 2000b). However, Previtali
(2006) showed that the top-down influence of
predators had strongest effects primarily when
prey numbers were low near the end of
prolonged droughts; data from Aucó, roughly
115 km SSE of Fray Jorge, also implicated
predation in density-dependent dynamics of
Phyllotis (Lima et al. 2001a, 2002a, 2002b).
However, at least at Fray Jorge neither
predators nor herbivores appear to “control”
their respective resources. Although transitory
and variable effects of predators and
herbivores can be demonstrated on some

Fig. 3: Annual peak plant cover, seed densities, and total rainfall for control grids (+D + P) for 19
years during 1989-2008.

Cobertura máxima anual de plantas, densidad de semillas y lluvia total en las parcelas control (+D+P) para 19 años
durante 1989-2008.
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components of the community, i t  is
increasingly clear that “bottom-up” factors
–rainfall and nutrients for plants, food for small
mammals and their predators– are the
dominant drivers at our study site (see also
Karr 1992, Polis et al. 1997, Polis 1999,
Holmgren et al. 2001). The transition between
El Niño and non-El Niño years is abrupt;
“bottom-up” control appears to prevail
generally, interrupted by brief periods of “top-
down” effects; even the regulatory nature of
such top-down influences, however, remains
unclear in the light of recent demographic
modeling (Previtali 2006, Previtali et al. 2009,
see below). Thus, there may be a productivity
threshold above which we see a covarying
relationship between consumer and resource
abundances (Oksanen et al. 1981, McQueen et
al. 1986, 1989, Mittelbach et al. 1988, Oksanen
& Oksanen 2000).

Experimental food addition positively
affected numbers and biomass of most core/
quasi-core species (i.e., O. degus, Phyllotis, A.
olivaceus) during dry periods, but not during
El Niño/high rainfall periods (Meserve et al.
2001). Within the context of a 3-trophic level
system (vegetation, rodents, predators), food
limitation implies density-dependence
resulting in strong oscillations (Turchin &
Batzli 2001). Further, a relationship between
productivity and food chain length has been
implicated at Aucó (Arim & Jaksic 2005, Arim
et al. 2007), which has a similar small mammal
and predator assemblage. Thus, predators may
be responding to rainfall and productivity
indirectly; prey abundance and functional
responses among predators also are involved
(Farias & Jaksic 2005).

Additionally,  spatial  dynamics are
important in understanding population and
community processes in this system (Milstead
2000, Milstead et al. 2007), possibly including
source-sink dynamics (sensu Pulliam 1988,
Watkinson & Sutherland 1995, Dias 1996).
Spatial factors are known to be important in
small mammal population cycles (Lidicker
1991, 1995) but, unlike arvicoline population
cycles, oscillations at our site seem more
affected by extrinsic (abiotic) factors rather
than intrinsic regulation.

Given these observations and the overall
complexities of this system, we have recently
adjusted our focus to include three other areas

of research in Fray Jorge. In combination with
long-term monitoring, these will allow us to
better identify the importance of key
components as well as address heretofore
unexamined questions.

1) Modeling small mammal population dyna-
mics

We recently applied demographic modeling to
provide deeper insight to our long-term small
mammal data set (Previtali  2006). Our
database is unique in extending over three
trophic levels (plants-rodents-predators),
spanning several El Niño/high rainfall events,
and combining both observational and
experimental approaches. Given the
remarkable fluctuations that small mammal
populations at Fray Jorge have undergone over
20 years, and the general agreement that both
endogenous and exogenous factors are
important in explaining population structure
and change, a basic question is: What is the
relative role of endogenous (feedback
structure) vs.  exogenous (ENSO-driven
rainfall) factors in determining small mammal
numerical fluctuations?

We have documented important features in
common among the population dynamics of
the three small mammal species analyzed to
date – O. degus, Phyllotis, and A. olivaceus.
Population changes of the latter two species
were driven by the combined effect of both
intrinsic (density dependent) and extrinsic
(climatic) factors (Lima et al. 2006), more
especifically by intraspecific competition and
current and lagged rainfall. However, climate
influenced dynamics for these species through
very different mechanisms. Whereas rainfall
had a simple additive effect for A. olivaceus,
the best model for population growth of
Phyllotis was a version of the Ricker model,
with rainfall influencing carrying capacity non-
additively, acting as the denominator in the
ratio with population size (Lima et al. 2006).

Recently we applied more descriptive
parameters (e.g.,  predation and food
resources) to model variation in the population
rate of change of Phyllotis and O. degus
(Previtali et al. 2009). Dynamics of both
species were driven by a non-additive
interaction of intraspecific competition and
resource availability consistent with earlier



80 GUTIÉRREZ ET AL.

predictions (Lima et al. 2006). However,
resource availability was better represented by
the combined effect of seed density and plant
cover for Phyllotis, and by rainfall for O. degus
(Previtali et al. 2009). Although earlier work
suggested influences of predation on O. degus
(e.g., Lagos 1993, Lagos et al. 1995, Meserve
et al. 1993b, 1996), the longer time series
analyzed indicated that predation is not a key
driver of population dynamics of degus or
Phyllotis. Thus, bottom-up forces had strong
impacts on these two species. For both, the
per capita population growth rate was
negatively associated with the ratio of
population density over current resources, and
provided the greatest explanatory power for
this variable (Previtali  et al .  2009). A
secondary influence was the additive lagged
effect of the previous year’s resource
availability.

In summary, the dynamics of three
dominant small mammal species at our site (A.
olivaceus, Phyllotis, and O. degus) are driven by
climate-mediated variation in resources, and
this leads to three new questions that we are
addressing with these data. First, what are the
underlying mechanisms? Second, what will be
the dynamical consequences of altered rainfall
patterns caused by GCC? Third, are species
similarly influenced by climatically-mediated
resource availability and are the general
patterns similar to those documented already?

We also are expanding the analysis to
examine aspects of these dynamics at shorter
time intervals; rather than a single observation
per year, we are investigating patterns
associated with intra-annual variation in
resources. This f iner scale will  provide
insights to processes occurring at shorter time
scales, while enabling us to obtain a more
accurate estimate of lags in population
responses to endogenous and exogenous
factors (cf., Lewellen & Vessey [1998]).

We are appling stochastic stage-structured
models to O. degus to make predictions of
prospective trends in the population rate of
change. We incorporate stochasticity to these
models as variation in annual precipitation,
reflecting predicted increases in mean and
variance of annual rainfall in response to GCC
(more frequent El Niño events, occasionally
strong La Niña events). We are developing
models using the mean and variance of

demographic parameters (survival and
fecundity) estimated from 18 years of data
(through 2006; Previtali et al. 2010), and are
validating the models by comparing predicted
population size with those observed since
2006. This approach has been used to
understand the effects of climatic variation on
the dynamics of Peromyscus maniculatus (Reed
et al. 2007).

We look forward to applying similar
quantitative approaches to other species in the
assemblage, in particular Thylamys and A.
longipilis, insectivorous species with very
different dynamics (Meserve et al. 1995, 2003).
The former is a “core species” but exhibits
strong intra-annual fluctuations, whereas the
latter is an “opportunistic species” that
disappears from the thorn scrub during dry
periods but maintains populations in the fog
forests and immigrates to the thorn scrub
during El Niño/high-rainfall events. Whereas
climate and food availabil ity have been
implicated as important demographic drivers
in Thylamys (Lima et al. 2001b), those of A.
longipilis appear dominated by higher-order
processes, at least in southern Chile (Murúa et
al. 2003). The pattern of fluctuations observed
for A. longipilis at Fray Jorge, with slow
increases after rainy years followed by slow
declines, is typical of second-order dynamics,
although influences from cyclic external
factors (e.g., oscillating climatic forces) can
generate apparent second-order patterns in a
first-order dynamics (Berryman & Lima 2007).
We are investigating dynamics of A. longipilis
using approaches similar to those recently
applied to other species in Fray Jorge
(Previtali et al. 2009), involving time series
analyses to investigate temporal changes in
rodent densities and in the relationship
between Rt and time-lagged densities. In light
of predictions of more frequent and intense El
Niño events, these analyses are important in
forecasting changes that may occur in the Fray
Jorge small mammal community.

Finally, we also look forward to analyses on
the opportunistic species Oligoryzomys
longicaudatus, although their low and sporadic
numbers make such analyses challenging if
not impossible. Ultimately, these analyses will
include all core species (O. degus, Phyllotis,
Thylamys) as well as a quasi-core species (A.
olivaceus), and an opportunistic species (A.
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longipilis ;  sensu Meserve et al .  [2003],
Milstead et al. [2007]) in the small mammal
assemblage. We anticipate that characterizing
demographic patterns and driving factors in
this manner will lead to a more comprehensive
understanding of the dynamics of key small
mammal species at our site, and allow us to
make predictive assessments of l ikely
responses by these key elements of the fauna
in response to climate change, and extrapolate
them to predictions at the community level.

2) Importance of other consumer groups – birds

Until recently, our efforts have concentrated
on documenting important linkages between
several major subsets of the organismal
components of our study system – small
mammals, plants (herbage, seeds), and
vertebrate predators. Another major consumer
group that likely has important links to their
predators and/or prey is songbirds, and we
initiated studies on these in 2002. Surprisingly
little work has been pursued on avian ecology
in northern Chile, and hence, we initiated
basic censuses as well as documented foraging
ecology for select species. Most recently we
have begun characterizing plumages in birds
at Fray Jorge to distinguish sexes and age
classes externally; with this information we
hope to initiate formal monitoring of avian
productivity and survivorship (e.g., MAPS -
Monitoring Avian Productivity and
Survivorship; DeSante et al. 2008) in the near
future.

Birds are the primary granivores at Fray
Jorge, followed by small mammals (especially
when populations are high); ants are only
trivial consumers (Kelt et al. 2004a, 2004b,
2004c). This contrasts with high seed
consumption rates by ants (and small
mammals) in Northern Hemispheric arid
zones (e.g., Brown et al. 1979, Davidson et al.
1980, 1984, 1985, Brown 1987), but supports
other studies refuting suggested low granivory
overall  in South America (Mares &
Rosenzweig 1978, Brown & Ojeda 1987, Medel
& Vásquez 1994, Medel 1995, Vásquez et al.
1995). Moreover, an extensive seed bank and
large guild of granivorous birds has been
documented in South American arid zones
(e.g.,  Marone & Horno 1997, López de
Casenave et al. 1998, Marone et al. 1998, 2000,

Gutiérrez & Meserve 2003). Unlike the
documented numerical responses of small
mammals to El Niño events, we lack such
information for birds. We do know that there
are strong seasonal increases in avian
populations due to immigration from the
Andean foothills and/or southern Chile in the
austral winter, and recently, we confirmed
transient populations of birds migrating
through the park in spring (A. Engilis,
unpublished data). Thus, we have focused our
work on documenting avian responses to
ENSO-induced fluctuations in resource levels,
including seasonal and annual demographic
fluctuations as well as variation in reproductive
patterns and productivity (fledgling success).

In 2002, we verified that variable-radius
point counts were the most appropriate means
of monitoring avian numbers, and in 2004 we
initiated triannual surveys on eight 1 km
transects comprising four stations ca. 250 m
apart crossing the study area. Transects are
oriented east-west and are arranged at  1 km
intervals (north-south) to span Quebrada de
Las Vacas. Using detection curves we
determined that a count of eight minutes was
optimal for surveying the scrub habitat of the
park. We conducted counts during the post-
breeding period (Feb.-Mar.), mid-winter (July-
Aug.), and during peak breeding season (Oct.-
Nov.).  All  counts were conducted from
daybreak to no later than 1,000 hrs on days
lacking moderate or strong winds; we
conducted all surveys twice (on separate days)
to minimize any spurious results. Thus, each
survey included 32 point counts sampled twice
for a total of 512 min. We determined
detectabilities and abundance for key species
using DISTANCE (Buckland et al.  2001,
Thomas et al. 2006). Surveys conducted during
the breeding season are not complete (only
three years analyzed and a fourth year only
recently obtained) and thus are not included
here. To date we have recorded 49 bird
species (Table 1), with a mean of just over 30
species per census (Fig. 4).

Considering only birds detected within 50
m of the survey point,  over half  of our
detections comprised only five species (Fig. 5)
– chincol (Zonotrichia capensis [Muller, 1776];
18 %), yal (Phrygilis fruticeti [Kittlitz, 1833]; 12
%), canastero (Asthenes humilis [Cabanis,
1873]; 8 %), tapaculo (Scelorchilus albicollis
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[Kittlitz, 1830]; 8 %), and diuca (Diuca diuca
[Molina, 1782]; 7 %). Summer and winter data
reflect marked changes in faunal composision.
In summer over 50 % of detections were of
chincol (21 %), canastero (14 %), chercán
(Troglodytes aedon Vieillot, 1809; 9 %), and
tapaculo (9 %); in winter these included yal (21
%), chincol (19 %), diuca (8 %), and tapaculo (7
%). Species abundance relationships are typical
for such assemblages, with few species
comprising the majority of observations, and a
large tail of rare species observed one to a few
times (Fig. 5).

Six species were observed only once within
a 50 m radius. Of these, three (aguilucho
[Buteo polyosoma (Quoy & Gaimard, 1824)],
torcaza [Patagioenas araucana  (Lesson,
1827)], picaflor gigante [Patagona gigas
(Vieillot, 1824)]) are commonly seen at Fray
Jorge; the former two were documented
frequently at greater distances, and the latter
was observed frequently but not documented
on point counts. Three other singleton species
are commonly observed in northern Chile.
Two of these, the minero (Geositta cunicularia
[Vieillot, 1816]) and the dormilona tontita
(Muscisaxicola macloviana [Garnot, 1829]), are
uncommon in the park because these species
do not frequent scrublands, but prefer open
and barren ground outside the park. The third,
the mirlo (Molothrus bonariensis [Gmelin,

1789]), frequents agricultural areas and is
rarely observed in the park.

Our data confirm that temporal patterns are
species-specific, and that overall, the avian
assemblage undergoes dramatic seasonal
fluctuations (Table 1). Some species are highly
seasonal in their abundance (e.g., yal, present
only in winter), whereas others are not clearly
seasonal (e.g., diuca, tenca [Mimus thenca
(Molina, 1782)], cachudito [Anairetes parulus
(Kittlitz, 1830)]), and some (e.g., chincol)
appear highly seasonal in most years but
notably aseasonal in others (Fig. 6).
Detectability is a function of bird behavior and
varies across species as well as seasons; most
songbirds are much more detectable in the
breeding season when they are vocalizing to
defend breeding territories or attract mates.
This does not explain the dramatic seasonality
of yal, however, which generally leave the park
in summer, presumably for areas in the Andes
or in southern Chile. Chincol at our site also
are more abundant in winter (presumably due
to the arrival of non-breeding individuals), so
we believe the patterns represented in Fig. 6
are valid. On the other hand, to our knowledge
tijeral (Leptasthenura aegithaloides [Kittlitz,
1830]), cachudito, and canastero are residents
in the park, and the very different numbers in
summer and winter requires further
investigation. We speculate that in winter

Fig. 4: Number of species separated by raptors vs. nonraptors. Figure includes all birds noted,
including “flybys”, potentially at great distances.

Número de especies separadas por rapaces vs. no rapaces. La figura incluye todas las aves divisadas, incluyendo
“bandadas”, potencialmente a gran distancia.
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these insectivores may band to form mixed-
species flocks, call less, and thus may be
encountered less frequently. Tencas also are
year-round residents in the park, and patterns
for this species were similar in both seasons,
with a gradual increase from 2004 throughout
2005/06 followed by some variabil ity in
numbers in subsequent seasons. These more
regular patterns may be explained by the
Tenca’s mutualistic relationship with the
endophytic mistletoe, Tristerix aphyllus
(Martínez del Río et al. 1996). Their patterns of
distribution in the park are predictable due to
their association with cactus that play host to
the mistletoe. Tenca have been observed
maintaining territories through the winter and
to vocalize year-round (A. Engilis, unpublished
data). We currently are quantifying densities
for other species and we look forward to

comparing ecologically related (e.g., trophic)
groups of species.

Species diversity (Shannon-Wiener index,
H’; Fig. 7) tended to be higher in summer than
winter (mean H’ = 1.56 vs. 1.45; t = 1.88, P =
0.0621). Whereas this parameter varied
significantly across all surveys (F = 291, P <
0.0001), a second order regression with time
explained little of the variance (r2 = 0.18; Fig.
7).

As indicated above, we are now quantifying
external indicators of reproductive activity and
using these to characterize reproductive
patterns and determine age of individual birds
more precisely. In 2008, we used mist-netting,
marking, and photography to document
plumages on 20 species in the park. These
data will be supplemented with examination of
museum specimens to develop a manual for

Fig. 5: Rank species abundance curves for all bird data, and summer and winter separately in
Bosque Fray Jorge National Park.

Ranking de curvas de abundancia de especies para todos los datos de aves, separadamente para verano e invierno
en el Parque Nacional Bosque Fray Jorge.
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ageing and sexing key avian species of Chilean
matorral. Such data are entirely absent for
species in our assemblage, but will allow us to
quantify recruitment (and hence productivity)
at a population level, which is more readily
accomplished than individual-based
recruitment (e.g., fledgling success at focal
nests) and avoids problems associated with
disturbing nests and possibly providing cues to
nest predators. Tracking avian densities and
productivity will allow us to quantify responses
to resource availability (e.g., precipitation and
seed availability in control plots), allowing
comparison with our long-term data on
mammals. Natural history and descriptive
ecology provide the foundation on which more
conceptual research can be pursued; to this
end, we quantified foraging behavior of the
Cachudito in coastal steppe matorral in Fray
Jorge (Engilis & Kelt 2009). Population
densities are higher at Fray Jorge than

reported elsewhere in Chile and Argentina,
and both abundance and ease of observation
allowed us to document 94 foraging bouts (77
in summer, 17 in winter) and 709 prey
captures. Cachuditos foraged frequently in
pairs, leapfrog style, maintaining contact with
soft “perrreet” calls.  Eighteen agonistic
encounters (15 in summer, three in winter)
consisted of rapid calling and displacement
behaviors, apparently related to territoriality;
once an intruder moved away, the defending
pair resumed foraging. Cachuditos generally
foraged in shrubs proportional to their
availability, although our data suggest some
preference for Adesmia, Baccharis, or Porlieria
(76 % of observations but only 58 % of cover
based on line transects). They located prey
(insects) visually, and made an average of 3.1
attacks per minute, capturing prey by perch
gleaning (47 % of captures), hover gleaning
(31.5 %), and flycatching (21.5 %).

Fig. 6: Temporal patterns in seven bird species at Fray Jorge over four years. Values for summer
are above the horizontal line, whereas those for winter are presented below the horizontal line.
Densities (bars) and confidence limits (� and �) were calculated using Program Distance (Laake
et al. 1993).

Patrones temporales de siete especies de aves en Fray Jorge en cuatro años. Valores por verano están presentados
arriba de la línea horizontal, mientras que estos por invierno están presentados debajo de la línea. Densidades
(barras) y límites de confianza (� y �) se calcularon usando el programa Distance (Laake et al. 1993).
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3) Impacts of introduced vs. native species in the
context of changing environmental conditions

Introduced plants comprise 18 % of the Chilean
flora, including 27 % of herbaceous plants.
Some naturalized species (e.g., Erodium,
Medicago polymorpha ,  Malva nicaensis)
constitute up to 45 % of the vegetation in
Chilean matorral (Arroyo et al. 2000, Figueroa
et al. 2004). Changes in the proportions of
exotic species have been attributed to the
effects of exotic grazers (Holmgren 2002) and
fire (Sax 2002, Kunst et al. 2003; but see
Holmgren et al. 2000a, 2000b). In Fray Jorge,
where fire and most livestock have been
absent at least since 1944, exotic plants
comprise up to 21 % of the herbaceous species,
and 19 % of the seed bank species (Gutiérrez &
Meserve 2003). In contrast to plants, only 24 of
610 vertebrate species in continental Chile (4
%) are introduced (Jaksic 1998a, Iriarte et al.
2005). However, the negative impacts of
introduced murid rodents (Rattus rattus
[Linnaeus, 1758], R. norvegicus [Berkenhout,
1769], Mus musculus  Linnaeus) and

lagomorphs (Oryctolagus cuniculus [Linnaeus,
1758], Lepus europaeus Pallas, 1778) have been
well-documented (murids, Lobos et al. 2005,
Milstead et al. 2007; lagomorphs, Jaksic
1998b). Jaksic (1998b) described positive
effects of rabbits and hares on indigenous
vertebrate predators including pumas, diurnal
hawks, and owls, but also noted that predators
apparently neglected to utilize these until the
late 1980’s. In Fray Jorge, rabbit and hare
populations were relatively low until recently
(Meserve et al. pers. observ.) simultaneous
with the prolonged El Niño/ high rainfall event
in 2000-2002 and a sharp decrease in the
numbers of foxes caused by an outbreak of
parvovirus, rabbit and hare numbers increased
dramatically in the park. Experimental work
immediately S of Fray Jorge demonstrated
significant effects of rabbit and hare exclusion,
including a 90 % increase in survival of
Prosopsis chilensis  (an arborescent shrub
largely extirpated from arid northern Chile),
increases in tall native grasses (e.g., Bromus
berteroanus), and decreases in native and
exotic prostrate ephemerals (Gutiérrez et al.

Fig. 7: Bird species diversity (H’) for summer and winter periods over five years at Bosque Fray
Jorge National Park. The quadratic regression (H’ = 1.18 + 1.39x - 0.01x2) is highly significant
(F10,150 = 291, P < 0.0001) but explains little of the variation (r2 = 0.058).

Diversidad de especies de aves (H’) para los períodos de verano e invierno en cinco años en el Parque Nacional
Bosque Fray Jorge. La regresión cuadrática (H’ = 1.18 + 1.39x - 0.01x2) es altamente significativa (F10,150 = 291, P <
0.0001) pero explica poco de la variación (r2 = 0.058).
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2007). Additional exclusion of herbivores
under conditions of simulated high rainfall
increased overall plant productivity, and
favored native species (Manrique et al. 2007).
Access by lagomorphs reduced native grass
biomass and facilitated invasive grasses; thus,
lagomorph herbivory may affect plant
community structure and composition by
influencing competitive dynamics between
native and exotic plant species.

As noted earlier, we converted D-P grids to
–SM treatments in 2001. To investigate the
potential effects of introduced herbivore/
folivores in the thorn scrub community in Fray
Jorge, we initiated an additional series of
exclusions using former degu exclusions (–
D+P) plus four new experimental grids in 2007
(see Fig. 1); as noted above, there have been
few discernible changes in the vegetation or
seed bank attributable to the exclusion of
degus here. We converted two former –D+P
grids (randomly selected) plus two new
experimental grids to lagomorph exclusion
grids (–L) by removing existing fencing and
installing ca. 1.5 m h chain link fencing buried
ca. 20 cm. The remaining two –D+P plus two
food addition grids were converted to all-small
mammal & lagomorph (–SM –L) exclusions by
use of the –SM fencing design supplemented
with a 1.5 m h chain link fencing inside it. Grid
conversion was completed, and small mammal
trapping and both vegetation and seed bank
sampling initiated, in late 2007.

Attempts to monitor lagomorphs with
spotlight surveys and live-trapping have proved
unsuccessful in this densely-covered shrubland;
to quantify patterns in lagomorph numbers at
our site, we initiated indirect inventory
techniques in August 2007. We established 54
pellet count stations (Lazo 1992, Diaz 1998,
Palomares 2001, Murray et al. 2002, 2005, Mills
et al. 2005) in six lines of nine stations each.
Stations are ca. 100 m apart and established to
sample the central grid complex. All pellets
within a 1 m radius of a central stake were
removed, and all new pellets are counted and
removed at six-month intervals.

We predict strong vegetative responses to
the combined exclusion of small mammals and
lagomorphs, particularly in high rainfall years
when plants show the strongest numerical
increases. This may alter community
composition as well  as interspecific

interactions among various plant groups. A
mild La Niña event in 2007 made the timing of
the initiation of our studies of lagomorph and
small  mammal + lagomorph exclusions
auspicious. Based on earlier results (Gutiérrez
et al 2007, Manrique et al. 2007), exclusion of
larger mammalian herbivores such as
lagomorphs should influence vegetation
dynamics especially among the herbaceous
plant guild in the thorn scrub. Further, effects
of lagomorphs and smaller mammals may be
cumulative in total exclusion treatments.

CONCLUSIONS

With 20 years of constant data collection, many
of our initial perceptions on how components
of the Chilean semiarid community function
and interact have required continued revision.
Whereas we initiated our work on the
presumption of a strong overwhelming role of
biotic interactions, abiotic factors have been
shown to have a strong and often determining
role. Further, models of small  mammal
dynamics here call for incorporation of spatial
and temporal heterogeneity to understand
overall  assemblage dynamics. Other
components of the system such as birds may
also be important,  but to date remain
understudied. Finally, we must interpret the
changes that are occurring in the system
against a background of a large and influential
component of invasive species as well as
ongoing climatic change. The latter aspect
may be the most important factor that needs to
be addressed.

In recent decades, rainfall  had been
declining in the northern Chilean semiarid
zone, continuing a gradual aridity trend over
the past 1,000 years (Bahre 1979, Villalba
1994). Since 2000, however, five of the past
nine years have seen above average
precipitation; moreover, the three largest El
Niño events of the past 100 years have
occurred since 1982 (Gergis & Fowler 2009).
Although there has been little change in small
mammal assemblage and shrub cover here
over 50 years, El Niño has been shown to
facilitate outbreaks of small mammals and to
influence agriculture elsewhere (e.g., Pearson
1975, Péfaur et al. 1979, Fuentes & Campusano
1985, Jiménez et al. 1992, Jaksic 2001, Jaksic &
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Lima 2003, Holmgren et al. 2006a, 2006b, Sage
et al. 2007). Holmgren & Scheffer (2001) and
Holmgren et al .  (2001, 2006a, 2006b)
emphasized that more frequent El Niño/
rainfall events may reverse or ameliorate the
general desertification of much of north-
central semiarid Chile (Bahre 1979, Schofield
& Bucher 1986, Ovalle et al .  1993).
Superimposed on this, increased frequency
and intensity of El Niño events as a
consequence of GCC may greatly alter the
relative importance of biotic and abiotic
interactions in semiarid systems. Increasing
rainfall may have strong impacts such as
altering patterns of nutrient cycling and
primary productivity (e.g., Gutiérrez 1993,
2001, Jaksic 2001, Reich et al. 2006, de la Maza
et al .  2009), species interactions and
community diversity (e.g., Chesson et al. 2004,
Holmgren et al. 2001, 2006a, 2006b), disease
vectors, reservoirs, and zoonoses (Epstein
1999, 2000, Epstein & Mills 2005), and the
impact of introduced species (e.g., Jaksic 1998,
2001, Logan et al. 2003).

We recognize that an alternative climate
change scenario could occur in this region; our
understanding of interactions between global
warming and ENSO and, in turn, between
ENSO and local environments, continues to
improve. For example, increased rainfall
during El Niño events increases productivity at
lower elevations in this region, but not at
higher elevations due to colder temperatures
(Squeo et al. 2006). Further, the influence of
fog from the Pacific Ocean, an important
contributor to local moisture in this semi-arid
region (Kummerow 1962, del-Val et al. 2006),
is reduced during El Niño years (Garreaud et
al. 2008).

Finally, we acknowledge uncertainty
regarding the strength and even the reality of a
causal link between the observed demographic
patterns and climate change (McCarty 2001),
especially due to a number of constraints that
exist when attempting to anticipate the effects
of climate change based on knowledge of
current conditions (Berteaux et al. 2006).
Nevertheless, our study contributes to the
growing body of studies in this field that is
helping to develop a more comprehensive
understanding of the potential effects of climate
change (McCarty 2001). Our study is unique in
that it implicates increased rains as the climate

change driver, documents clear responses in
community parameters, and provides insight to
climatic influences on small mammal species,
all of which are seldom reported in the
literature on climate change impacts.

Long-term research on small mammal
assemblages in arid systems has been
productive in our understanding of ecosystem
processes. Recent studies have emphasized
the role of local ecological compensation and
“zero-sum dynamics” within the context of a
regional species pool (e.g., Ernest et al. 2008).
Such dynamics assume a diverse pool of
species as potential colonists. Chile has
relatively low beta diversity of both birds and
small mammals (Cody 1975, Glanz & Meserve
1982) and as such it is unlikely that spatio-
temporal signals in terrestrial ecology at our
site will be similar to those documented
elsewhere. To test this conjecture we are
preparing to quantify ecosystem properties
including energy utilization across grids and
over time. In particular, we are eager to
compare small  mammal assemblages on
predator and lagomorph removal plots with
those on controls.

Many authors have stressed the importance
of both spatial and temporal scale in ecology,
and of the dearth of studies extending across
large spatial scales or many years (e.g., Wiens
et al. 1986, Giller & Gee 1987, Powell 1989,
Wiens 1989, Levin 1992, Polis et al. 1996,
Schneider 2001). Recently, Agrawal et al. (2007)
recognized that the strength and outcomes of
species interactions depends on the biotic and
abiotic context in which they occur, a fact borne
out clearly by results of our studies. Now the
longest field manipulation in the temperate
neotropics, and spanning five El Niño/high
rainfall events in 20 years of study, our work
has documented variable effects of biotic
interactions depending on the abiotic context.

In this context, the role of long-term
ecological studies such as this one assumes
great importance. For example, since about
2000, we have noted a tendency for small
mammal biomass in Fray Jorge to be
dominated by the larger, more mesic-adapted
caviomorph rodent, O. degus (Meserve et al.
2009); further, degus are showing greater
survival and recruitment in the last 10 years
(Previtali et al. 2010). Small mammal species
diversity has also become more stable and less
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oscillatory at the site (Meserve et al. 2009).
This has occurred concomitant with the
increase in mean annual precipitation since
2000, and less-pronounced interannual
variation (Fig. 3). Without long-term studies
such as this one, we would not have been able
to detect such changes, nor compare them
against a background of prevailing population
fluctuations in response to periodic El Niño
events. Determining whether such trends
signal a major shift in small mammal (and
other biotic) components will only be feasible
with continued maintenance of long-term
monitoring efforts in this unique part of Chile.

SUPPLEMENTARY MATERIAL

The Spanish version of this article is available
as online Supplementary Material at http://
rchn .b io log iach i le . c l/suppmat/2010/1/
SM_Gutierrez_et_al_2010.pdf
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