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ABSTRACT

Forestry plantations are expected to be managed in ways to conserve biodiversity while producing goods and services. 
This goal implies a signifi cant challenge as plantations tend to reduce species richness. The presence of well developed 
understory enhances the value of plantations as habitat for native fauna. Here, we develop a straightforward method 
to assess the availability of understory in forestry stands using laser imaging detection and ranging (LiDAR) data 
and aerial RGB high resolution images. Based on fi eld and airborne acquired data for Pinus radiata stands in central 
Chile, the digital crown model (DCM), derived from the subtraction of the digital terrain model (DTM) from the 
digital surface model (DSM) is a more reliable predictor of understory height that variables like terrain slope, aspect, 
plantation age and canopy height in forests and plantations which have not complete closed canopy. The correlation 
between DCM and understory though decreases while the actual height of the plantation canopy increases, rendering 
DCM a conservative estimate of understory development. The use of DCM will allow a fast and cost/effective estimate 
of habitat suitability in forestry plantations.
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RESUMEN

Las plantaciones forestales deberían ser manejadas de forma que conserven biodiversidad al tiempo que provean 
bienes y servicios. Este es un desafío signifi cativo pues las plantaciones tienden a reducir la riqueza de especies 
nativas. La presencia de un sotobosque desarrollado incrementa el valor de las plantaciones como hábitat para la fauna 
nativa. En este trabajo desarrollamos un método sencillo para evaluar la disponibilidad de sotobosque en plantaciones 
forestales empleando imágenes LiDAR y RGB de alta resolución. En base a datos de campo, LiDAR e imágenes aéreas 
para rodales de Pinus radiata en Chile central, el modelo digital de copa (DCM), obtenido de sustraer el modelo 
digital de terreno (DTM) del modelo digital de superfi cie (DSM) es un predictor más confi able del desarrollo del 
sotobosque que variables como la pendiente del terreno, la exposición, la edad de la plantación y la altura del dosel 
de la plantación en situaciones en las cuales en dosel superior no está completamente cerrado. La correlación entre 
DCM y el sotobosque sin embargo decrece con la altura del dosel de la plantación, lo que hace de DCM un estimador 
conservador del desarrollo del sotobosque. El uso de DCM permitirá una evaluación rápida y costo/efectiva de la 
disponibilidad de hábitat para fauna nativa en plantaciones forestales. 

Palabras clave: interpolación, LiDAR, Pinus radiata, plantaciones forestales, sotobosque.

INTRODUCTION

Forestry plantations covers over 265 million 
ha worldwide, growing 2 % yearly (FAO 
2011). Landscape transformation brought 
about by these plantations has impinged upon 
biological diversity, particularly planted forests 
based on introduced species (Carnus et al. 
2006). Indeed, the Convention of Biological 

Diversity (CDB) has set as a decennial goal 
to enhance the role of forestr y plantations 
in the conser vation of biodiversity (CBD 
2010). Increasing evidence suggests that 
structurally complex plantations, with a well 
developed understory could be a way forward 
to achieve this goal. In fact, species richness 
and abundance tend to be higher in planted 
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forests with well developed understory than 
those devoid of such vegetation, therefore 
minimizing the reduction of species richness of 
soil insects, herpetozoans, mammals and birds 
among other taxa (see Simonetti et al. 2012 for 
a review). 

In this framework, to accurately and cost/
effectively assess the presence of understory 
vegetation in planted forests is mandator y. 
Precise assessment of understor y coverage 
including its spatial heterogeneity enables 
quantification and characterization of the 
amount of suitable habitat that planted forests 
could provide, contributing to mitigate the 
impacts of landscape transformation. 

Chilean conifer plantations are a case 
in point. Cur rently, 1.5 million ha are a 
monoculture of Pinus radiata D. Don. Stands 
with well developed understor y hold more 
species of insects, mammals and birds than 
those with scarce or no undergrowth. Among 
species using plantations, at least temporarily, 
are endangered species like Leopardus guigna 
(Molina), a fact that contributes to achieve 
CBD’ goals (Simonetti 2006, Estades et al. 
2012). Therefore, assessing how much of the 
area covered by plantations could be suitable as 
surrogate habitat for native fauna would provide 
solid managerial information to properly engage 
the forestry industry in biological conservation. 
Here we develop a method to assess understory 
development using laser imaging detection 
and ran  ging (LiDAR) data and aerial RGB high 
resolution images (see Baltsavias 1999, Wher 
& Lohr 1999 and Elmqvist et al. 2001 for details 
regarding the use of these techniques). 

LiDAR data, in conjunction with various 
sources of forest inventories data, can be 
successfully used to quantify different aspects 
of forests 3-D structure, such as volume and 
biomass estimates and canopy height profi les, 
among other features (Koch & Dees 2008). 
Hence, small-footprint LiDAR may be used to 
quantify components of forest structure needed 
to assess animal-habitat relationships (see 
review by Vierling et al. 2008). In fact, airborne 
laser scanning data can be used to predict 
habitat quality and to map species distributions 
as a function of habitat structure (Bradbury 
et al. 2005, Goetz et al. 2007). Regarding the 
assessment of understory vegetation, LiDAR 
data can be utilized for to derive both a variety 
of environmental factors which account for the 

presence of understory vegetation, including 
canopy structure, forest successional stage and 
topography (e.g., Falkowski et al. 2009) and, to 
characterize height and cover of the understory 
vegetation either as woody vegetation or 
suppressed trees integrating only leaf-on and 
leaf-off LiDAR (Hill & Broughton 2009). 

One critical step in using point clouds to 
derive digital terrain and surface models (DTM 
and DSM, respectively) is the identification 
and classification of ground returns, which 
impinges upon the quality and precision of 
any LiDAR product. Errors in the estimation 
of the ground level will affect the subsequent 
estimation of an object above it, including all 
types of vegetation. Many algorithms have been 
developed to generate DTMs using LiDAR data. 
These algorithms can be classifi ed into two 
categories based on type of data used: (a) point 
clouds and (b) raster range image. A DTM can 
be constructed from the ground points, and a 
digital surface model (DSM) can be derived 
from the highest points within a defi ned grid 
box (Hollaus et al. 2006). An object height 
model can be calculated then by subtracting 
DTM from the DSM. In a forest environment, 
without human built structures, all objects 
are assumed vegetation given a digital crown 
model (DCM). In this study, we deal with the 
use of DTM and DSM to estimate understory 
height in forestry plantations. Our aim is to 
develop a simple step algorithm for processing 
these types of data in order to advance a simple 
novel way to estimate understory development, 
moving from comparisons of observed versus 
estimated values at plot level to the assessment 
of obser ved versus estimated understor y 
heights surfaces, which we obtained applying 
geo-statistical interpolation on fi eld and LiDAR 
data, respectively. This procedure will enable 
the assessment of the availability of suitable 
habitat for native fauna in forestry plantations, 
which could be used temporarily used for the 
native fauna, contributing to the fulfi llment of 
the CBD targets. 

METHODS

Study area 

The study area is Pantanillos Forest Research Station 
of the University of Chile (WGS84 UTM 18s: 358260 S, 
728170 W, Fig 1), in the Maule region, coastal range 
of south-central Chile. The area was originally covered 
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by Nothofagus-dominated forests (Maulino forest), 
composed mainly by deciduous Nothofagus glauca 
(Phil.) Krasser and Nothofagus obliqua (Mirb.) Oerst., 
and evergreen species such as Nothofagus dombeyi 
(Mirb.) Oerst, Cryptocaya alba (Mol.) Looser, Persea 
lingue Nees, and Aristotelia chilensis (Mol.) Stuntz, 
among others (San Martín & Donoso 1996). Currently, 
this type of forest is highly fragmented, immersed 
in a landscape dominated by exotic Monterey pine 
(P. radiata) plantations (Grez et al. 1998, Echeverría 
et al. 2006). At the Forest Research Station there 
are plantations of different age whose understory is 
well developed because each plantation receives two 
to three thinning and prunings during the 15 to 20 
years rotation period allowing light penetration and 
plant development (Estades & Escobar 2005). This 
understory is composed mainly by shrubs (e.g. Azara 
integrifolia Ruiz et Pavón, Escallonia pulverulenta (Ruiz 
et Pav.) Pers., and small trees such as N. glauca, C. alba, 
Lithraea caustica Hook. et Arn., and Luma apiculata 
(DC) Burret (Estades & Escobar 2005). 

Field data collection and processing

Field data was gathered through systematic sampling 
of a grid of clusters spaced 200 m x 200 m over all types 
of vegetation. Each cluster contains fi ve subplots, one 
central and four neighboring ones 30 m apart, placed in 
the four geographic directions (N, S, W and E; Fig. 1). 
The coordinates of the plot center were located using a 
Garmin double frequency GPS Topcon GRS-1 (WGS84 
UTM18s). We measured DBH, height, and crown ratio 

of all trees above 5, 10 and 20 cm of DBH in concentric 
rings of 2, 4 and 8 m in every plot. Understory was 
assessed only at the 4 m radii ring, recording species, 
average height, mean coverage (%) and plant density. A 
total of 98 clusters, comprising 490 plots were sampled. 
Using this data, a raster was obtained by applying 
ordinary kriging, representing understory height (H), as 
an estimate of its development. 

LiDAR and image data acquisition

We decided to use LiDAR because the management 
of pine plantations, including pruning and thinning, 
determines that the canopy is not completely closed, 
which in turn allows both enough light to reach the 
ground understory development and returns of LiDAR 
pulses.

Discrete waveform laser scan data were acquired in 
March 31, 2011 by Digimapas Chile Ltd. (http://www.
digimapas.cl) using a set Harrier 56/G4 Dual System 
mounted on a Piper PA-24 Comanche. A digital image 
acquisition sensor (VIS) and LiDAR scanning were set 
together and the fl ight was conducted with a nominal 
height over the ground of 580 m AGL without GPS 
errors, with an average speed between 180 to 210 km h-1 
and leading to an average point density of 4.64 points per 
square meter (see Table 1 for fl ight and system details). 
Additionally, we acquired a aerial image (VIS), with 
the three channels (red, green and blue) in the visible 
range of the electromagnetic spectrum, with 1 m spatial 
resolution, obtained at the same time of LiDAR data and 
therefore it was truly orthorectifi ed.

Fig.1: Study area in Maule Region, South-central Chile. Central positions of clusters are overlaid. The right fi gu-
re represents the inside confi guration of each cluster, and depicts the relative position of sampling subplots. 

Área de estudio en la Región del Maule, centro-sur de Chile. Se indica la posición de los grupos de muestreo. La imagen de la 
derecha representa la confi guración interna de cada unidad de muestreo, y muestra la posición relativa de cada subunidad de 

muestreo.



436 HERNÁNDEZ ET AL.

LiDAR and image data processing 

To process LiDAR point clouds into XYZ Ascii format, 
we used LasTools (Isenburg & Shewchuk 2010). First, 
we convert LiDAR data into *.las format and then we 
used the multiscale curvature algorithm (mcc-lidar) to 
classify ground points only (Evans & Hudak 2007). We 
used 1.5 and 0.3 as scale and threshold parameters. The 
optimal scale parameter depends on, fi rst, the scale of 
the objects on the ground (i.e. rocks, trees) and second, 
on the sampling interval (post spacing) of the LiDAR 
data. LiDAR sensors are capable of collecting high 
density data (e.g., 8-10 pulses m-2) which translate to 
0.35 m pulse. This is 1/sqrt (8 pulses m-2 = 0.35 m pulse). 
Sparser LiDAR data (e.g., 0.25 pulses m-2) translate to 
a spacing of 2.0 m   pulse (1/sqrt(0.25 pulses m-2) = 2.0 
m pulse). Evans & Hudak (2007) recommended 0.3 as 
a good starting value to try for the curvature threshold 
in forest landscapes. Once the ground points were 
classifi ed, we used the interpolation to raster LasTools 
(las2dem.exe) to obtain a DTM, using only ground 
points, and a DSM using all points. Further processing, 
subtracting DTM from DSM allow us to obtain a DCM. 
Complementary, the VIS image was used to identify and 
classify all stands in the study area into fi ve stand types: 
pine plantations (53 %), eucalyptus plantations (6 %), 
native forest (29 %), mixed stands (6 %), and other types 
(6 %). A polygon shape fi le was fi nally obtained for all 
former types.

The DCM was sliced into eight height stratum 
as follows (in meters): 0-0.5, 0.5-1.0, 1.0-2.0, 2.0-4.0, 
4.0-8.0, 8.0-16.0 and 16.0-32.0. Each one was then 
transformed into a raster containing only pixels within 
the correspondent height class. These pixels were 
separated into two sets, 60 % for training and performing 
ordinary kriging and 40 % for validation. The interpolated 

rasters were named H050, H100, H200, H400, H800, 
H1600 and H3200 to refl ect the height stratum they 
represented. Slope (SLOPE) and aspect (ASPECT) were 
directly calculated from the DTM data. Finally, the year 
of plantation (YEAR) was added as an additional variable 
to complete a fi nal set of 11 predictors. These variables 
are the most frequently used to model forest and 
plantation attributes (see Hernández et al. 2007). 

Modeling 

To be able to model the relations between all 
preprocessed predicted variables and the target variable, 
understory height (H), we sampled all rasters using 2000 
plots of 4 m radii, randomly located over the study area. 
This way we obtained a master table that contains 2000 
records and the 11 predictors plus understory height 
(H). Using this dataset we analyzed correlation among 
variables and fi tted multiply linear models. 

RESULTS

Interpolation of fi eld and LiDAR data

The interpolation of heights using LiDAR data 
available for the seven strata height classes 
generates not only prediction sur faces but 
also errors, i.e. uncertainty surfaces, giving an 
indication of how good the predictions are. The 
error for all height classes has low values, near 
to zero, and also constrained standard deviation 
except for higher stratum where their values 
increase. The same behavior was obser ved 
for the kriging standard error, suggesting 
estimates are accurate (Table 2).

Correlations between understory height and pre-
dictors

The predictor DCM had the strongest 
correlation to understory height, exhibiting 
values that decrease as stratum height increase 
(Table 3). There is also a signifi cant (α = 0.05) 
positive Pearson’s product moment correlation 
coeffi cient (> 0.3) between the overall stands 
(All) and predictors DCM, SLOPE, H400, 
H1600 and H3200. The same tendency was 
observed for stand of 0-0.5 m dominant height 
and DCM, and for stand of 8.0-16.0 m and 4.0-
8.0 m dominant height. 

Linear model

Figure 2, bottom left and right, shows the 
relation between the residuals of estimates and 
slope. There is evidence of an additive effect 
on residues when high slopes and high heights 

TABLE 1
Flight and system variables of the fl ight over 
Pantanillos Forest Research Station, Maule 

Region, South-central Chile.
Variables de vuelo y sistema de vuelo sobre la Estación 

de Investigación Forestal Pantanillos, Región del Maule, 
centro-sur de Chile.

Parameter Value

Sensor Harrier 56 (Trimble)
Scanner Riegl LMS-Q560
Date 31 March, 2011
Time 14:05-15:23
Flying speed 180 to 210 km/h
Pulse frequency 100 kHz
Beam divergence 0.5 mrad
Scan frequency 100 Hz
Field of view 22.5°
Mean footprint diameter 29 cm
Laser wavelength 1550 nm
Flying height 580 m
Point density 4.64 points m-2
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of plantations are combined that can be seen 
in the middle zone of the study area. On the 
contrary, in the bigger native forest stand, in 
the south-east area, there are also high slopes 
but the behavior of residues are the opposite, 
concentrating low values, probably because of 
the open canopy structure of this vegetation. 
Aspect was codifi ed into eight classes following 
a clockwise fashion from 1 (N) to 8 (NW) and 
therefore, the overall negative correlation is 
af fected by this codification. An interested 
behavior can be seen for the year of plantation 
variable (YEAR), which tends to increase 
its negative correlation with H as the age of 
the plantation increases. When the dominant 

canopy develops into denser structure, the 
understory exhibit less development.

Table 4 illustrates the linear model summary 
for the general form H = f (predictors). The 
sampling points were selected for each model 
according to their dominant height stand, from 
DCM, as indicated, fi tting models for each one. 
Most predictors showed strong lineal relation 
according to the stand dominant height under 
consideration. When the actual dominant 
height is low, i.e. less than 2 m, height stratum 
predictors have low explanation power. The 
overall model, including all ten predictors gave 
the best results. Strongly significant linear 
relation was also found at 99 %, for model 0 - 

TABLE 2
Description of variables used in interpolation of heights using LiDAR data available at each stratum 

of height classes. All variograms were calculated using a lag of 50 m. 
Descripción de variables empleadas en la interpolación de alturas usando datos LiDAR disponibles de cada clase de 

altura. Todos los variogramas fueron estimados usando un retardo de 50 m.

Name Height Stratum 
(m)

Height
Points

Variogram model Validation (mean error ± Std. Dev)

Sill Range Error Std. Error

H050 0 - 0.5 236747 0.00086 268.1 0.00045 ± 0.14759 0.15152 ± 0.00013

H100 0.5 - 1.0 98556 0.00042 592.7 0.00026 ± 0.14734 0.14956 ± 0.00013

H200 1.0 - 2.0 177220 0.00104 592.7 -0.00017 ± 0.29311 0.29123 ± 0.00024

H400 2.0 - 4.0 187897 0.01462 246.8 -0.00364 ± 0.57145 0.58524 ± 0.00047

H800 4.0 - 8.0 229328 0.04578 592.7 -0.01028 ± 1.09496 1.14317 ± 0.00080

H1600 8.0 - 16.0 202185 0.32651 280.4 -0.03074 ± 2.09319 2.27726 ± 0.00204

H3200 16.0 - 32.0 161182 1.12408 592.7 -0.03792 ± 2.98586 3.49234 ± 0.00303

TABLE 3
Simple correlations between understory observed height (H) and predictors. Signifi cant correlation 

at α = 0.05 are denoted by an asterisk *.
Correlaciones simples entre la altura observada del sotobosque (H) y los predictores. Correlaciones signifi cativas a α = 

0.05 se indican con un asterisco *.

H (m) DCM SLOPE ASPECT YEAR H50 H100 H200 H400 H800 H1600 H3200

All 0.404* 0.389* -0.112* -0.334* -0.033 0.167* 0.298* 0.303* 0.125* 0.319* 0.313*

16.0 - 32.0 0.034 0.291 -0.108 -0.271* -0.008 -0.015 -0.093 0.232* -0.172 0.135 -0.193

8.0 – 16.0 0.119 0.392 -0.286* 0.061 0.017 -0.041 0.067 0.072 -0.032 0.200*

4.0 – 8.0 0.186 0.348 -0.174 -0.002 -0.082 -0.012 0.067 0.198 -0.058

2.0 – 4.0 -0.074 0.212 -0.131 0.193 0.204 0.094 0.044 -0.194

1.0 – 2.0 0.199* 0.042 -0.281* 0.210* 0.218* 0.014 0.115

0.5 – 1.0 0.128 0.087 0.128 0.167 0.158 -0.052

0 - 0.5 0.339* 0.247 -0.097 -0.113 -0.053
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0.5 in DCM predictor, and for model 8.0 - 16.0 
in SLOPE predictor. The associated residues 
showed a slightly positive bias that make 
estimates to have a tendency to produce lower 
values than observed ones (Fig. 3).

Stratum height variables, from H050 to 
H3200, did not provide strong correlation in any 
of the stands. This fact could be related to an 
inadequate selection of height classes, which 
separate height values in arbitrar y classes. 
Nevertheless, when using them as predictors in 

linear models, most of them showed signifi cant 
statistical relation to understory height (Table 
4). All models exhibit strong lineal relation 
for a subset of predictors but, different ones, 
according to the dominant height of the stand 
under consideration. When the actual dominant 
heights are low, i.e. less than 2 m, the height 
stratum predictors have very little explanation 
power, which is probably related to the absence 
of either understor y or plantation species 
development. Both components tend to be 

Fig. 2: Interpolated rasters of both observed (top-left) and predicted (top-right) understory average heights. 
Bottom left: Map of standard residues of overall linear model. Bottom right: map of slope classes.

Cuadriculados interpolados de la altura media del sotoboques observada (arriba-izquierda) y predicha (arriba-derecha). Abajo-
izquierda: mapa de los residuos estandarizados de modelo lineal general. Abajo-derecha: mapa de clases de pendientes.
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TABLE 4
Summary of linear models for the general form H = f (predictors). Every column includes a different 
set of predictors as height strata varies. Signifi cant correlation at α = 0.001 are denoted by ‘***’, α = 

0.01 by ‘**’, α = 0.05 by ‘*’and α = 0.1 by ‘.’; - indicates it was nor included in the indicated model.
Resumen de los modelos lineales para la forma general H = f (predictores). Cada columna incluye un conjunto diferente 

de predictores según la altura del estrato cambia. Correlaciones signifi cativas a α = 0.001 se indican por ‘***’, α = 0.01 
por ‘**’, α = 0.05 por ‘*’y α = 0.1 by ‘.’; - indica que no fue incluida en el modelo.

Predictors
Statistical signifi cance for predictors used in lineal multiple models. 

All 0 - 0.5 0.5 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 8.0 8.0 - 16.0 16.0 - 32.0

Intercept .   **  .  *  ** **

H050 * .  *     

H100  -       

H200 ** - -      

H400 *** - - -   *  

H800 *** - - - -    

H1600 ** - - - - - **  

H3200  - - - - - -  

SLOPE ***  *  * ** *** *

ASPECT ***   *   ** **

DCM *** ***  *     

YEAR    **  * * **

Parameter of the models

Residual std. 
error 0.3457 0.2469 0.295 0.3186 0.2427 0.3591 0.4157 0.407

Degrees of 
freedom 886 177 110 136 83 62 196 71

Multiple 
R-square 0.3048 0.1503 0.1074 0.1915 0.1451 0.2535 0.2726 0.3235

p-value 2.2E-16 2.2E-05 0.05 0.0001 0.09 0.03 7.41E-10 0.002

Fig. 3: Left: Histogram of residuals from the model that uses all sampling units and all ten predictors. Right: 
Scatter plot of observed understory heights (H) against predicted ones (fi tted).

Izquierda: histograma de los residuos del modelo que emplea todas las unidades muestrales y los diez predictors. Derecha: 
diagrama de dispersión de la altura observada del sotobosque (H) frente a los valores predichos (f).
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mixed up and their discrimination is diffi cult 
to achieve. The overall model, including all 
predictors gave the best results, and can be use 
in understory mapping.

DISCUSSION

The Convention on Biological Diversity has 
established that by 2020, forestry plantations 
should be managed in ways to ensure the 
conservation of biodiversity. This goal aims 
to reduce pressures upon biodiversity, 
minimizing the ef fects of forestry practices 
upon it (CBD2010). To achieve it, forestr y 
plantations should be a suitable surrogate 
habitat for native species, and the presence of 
a well developed understory is a key factor. 
Therefore, forestry plantations holding such 
undergrowth could provide both goods and 
services while contributing to conserve a suite 
of native species (Simonetti et al. 2012). To 
foster wildlife-friendly practices in otherwise 
“productive lands” (Fisher et al. 2008), an 
assessment of the understory development is 
required to evaluate the potential of forestry 
stands as surrogate habitat for fauna as a 
necessary step to integrate these areas devoted 
to forestry production into wildlife conservation 
programs as well. The use of LiDAR data in this 
assessment is feasible, albeit a conservative 
approach. The height from DCM had the 
strongest correlation to understory heights, 
but such correlation decreases while the actual 
height of the dominant canopy, i.e. plantations, 
increases. This fact could be accounted for 
by the number of returns available in each 
vegetation layer, which gets lower when upper 
canopy layer gets higher. This effect is stronger 
as plantation density increases (Lefsky et al. 
2002). 

The predicted understor y height map 
provided reliable information for ecological 
applications at a very high spatial resolution 
and it is comparable to similar studies (Turner 
et al. 2003, Goetz et al. 2007, Vierling et al. 
2008, Bergen et al. 2009). Hotspots of higher 
values of understory height can be detected 
and its continuity is captured in the predicted 
map (Fig. 2 top-right) as can be seen when 
draw against observed understory height map 
(Fig. 2 top-left). It is important to consider that 
estimation were done at one square meter cells 
and, although simple linear modeling showed 

low r-square values, the residuals are controlled 
within the range of 0.24 and 0.41 meters, 
allowing the use of this type of understory 
maps in further studies. However, the estimates 
exhibit some bias between 0.2 and 0.5 m for 
high understory heights when it has values 
near or above 2.0 m, tending to underestimate 
their values. This ef fect can be related to 
the original point cloud acquisition and the 
vegetation architecture (Lefsky et al. 2002). The 
gaps in the dominant canopy allow for some of 
the LiDAR pulses to reach the lower vegetation 
which has also a low probability to return from 
the top of it, generating lower heights. As these 
points can mainly be gather in the gaps, no high 
angles can be used as they the pulses need to 
be as vertical as possible to actually receive any 
returns, which also reduce the possibilities of 
top understory points to be form in the fi nal 
cloud. In any event, we can hypothesize that 
the point cloud density, from underneath the 
main canopy layer in a given small area, should 
be related to the understor y coverage and 
density, and we can only have good samples 
of this structure in the gaps. On another 
hand, the negative relation between canopy 
density and understory development has been 
well documented for managed native forest 
and plantations (Castedo-Dorado et al. 2012, 
Shatford et al. 2009, Ogden et al. 1997). This 
relation states that the lower density in trees 
the bigger the understory development, which 
means higher heights. Putting ever ything 
together, it would be possible to estimate 
understory density and coverage by using the 
density of return points in the point cloud or, at 
least, in DCMs. 

One of the advantages of our approach 
relies on the fact that it requires a minimum 
of fi eld information, reducing associated time 
and operational costs. Furthermore, it may be 
applicable to any type of forests, either native 
or plantations. This means that is possible to 
built understory maps at the landscape level 
in order to feed the large scales required to 
properly plan spatially explicit conservation 
activities (e.g., Lindenmayer et al. 2006). 
Another advantage is availability of large 
LiDAR datasets, increasingly more available 
for such applications, especially in the central 
coastal range (e.g., Cartus et al. 2012). In this 
region, land use change and fragmentations 
processes are very dynamic (Echeverría et al. 
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2006) and such maps can play an important 
role to in biodiversity conservation planning, 
potentially incorporation of plantations to 
ensure both habitat provisioning and landscape-
level connectivity for the fauna. The simple 
model advanced here will then allow the rapid 
and conservative estimate of how much of the 
1.5 million ha currently allocated to Pinus could 
be incorporated into wildlife conservation in 
Chile as well as abroad, contributing to render 
the forest industry a more sustainable one.
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