fundada en 1897 y publicada por la Sociedad de Biología de Chile

<< Volver al Volumen 82 Número 3

Revista Chilena de Historia Natural 82 (3): 347-360, 2009
ARTÍCULO DE INVESTIGACIÓN
Una evaluación de los métodos para modelizar la distribución de insectos patagónicos
MARCELO F. TOGNELLI, SERGIO A. ROIG-JUÑENT, ADRIANA E. MARVALDI, GUSTAVO E. FLORES & JORGE M. LOBO
Varios estudios han mostrado que el desempeño de los modelos de distribución puede variar dependiendo de la especie modelizada, el área de estudio o el número de localidades de presencia utilizadas, sugiriendo que es necesario evaluar cuál es la mejor técnica de modelización en cada situación concreta. En este estudio evaluamos distintas técnicas de modelización para la distribución de los insectos patagónicos. Hemos aplicado ocho de los métodos más ampliamente usados (redes neuronales, BIOCLIM, árboles de clasificación y regresión, DOMAIN, Modelos Aditivos Generalizados, GARP, Modelos Lineares Generalizados y Maxent) a los datos de distribución de diez especies de insectos patagónicos, comparando su efectividad mediante cinco medidas diferentes. Para evitar el problema de la carencia de datos de ausencia fiables con los que evaluar los modelos, hemos utilizado pseudoausencias seleccionadas al azar fuera de un área poligonal definida por taxónomos expertos. Nuestros análisis muestran diferencias significativas entre los distintos métodos de modelización dependiendo de la medida de validación utilizada. Maxent es el método que ofrece mejores resultados para cuatro de las cinco medidas de validación utilizadas, aunque su precisión no difiere de la obtenida con redes neuronales. Cuando se examina la efectividad para cada una de las especies, Maxent resultó también uno de los métodos más fiables, especialmente en el caso de aquellas especies con un pequeño número de localidades. En conjunto, este estudio identifica cuatro grupos de técnicas de modelización. El de mayor fiabilidad sería el compuesto por Maxent y las redes neuronales, seguido de cerca por DOMAIN. El tercer grupo incluiría GARP, GAM, GLM y CART, mientras que el cuarto estaría formado por BIOCLIM. Aunque estos resultados pueden permitir obtener mejores predicciones de distribución con capacidad para ser utilizadas en la planificación de reservas, es necesario ser cauto en su utilización debido a la naturaleza provisional de estas simulaciones.
Palabras clave:
datos de pseudoausencia, evaluación de modelos, modelos de distribución de especies, opinión de expertos, Patagonia

XHTML 1.0 Transitional Válido ¡CSS Válido!