founded in 1897 and published by the Biology Society of Chile

<< Back to Volume 82 Issue 3

Revista Chilena de Historia Natural 82 (3): 347-360, 2009
RESEARCH ARTICLE
An evaluation of methods for modelling distribution of Patagonian insects
MARCELO F. TOGNELLI, SERGIO A. ROIG-JUÑENT, ADRIANA E. MARVALDI, GUSTAVO E. FLORES & JORGE M. LOBO
Various studies have shown that model performance may vary depending on the species being modelled, the study area, or the number of sampled localities, and suggest that it is necessary to assess which model is better for a particular situation. Thus, in this study we evaluate the performance of different techniques for modelling the distribution of Patagonian insects. We applied eight of the most widely used modelling methods (artificial neural networks, BIOCLIM, classification and regression trees, DOMAIN, generalized additive models, GARP, generalized linear models, and Maxent) to the distribution of ten Patagonian insect species. We compared model performance with five accuracy measures. To overcome the problem of not having reliable absence data with which to evaluate model performance, we used randomly selected pseudo-absences located outside of the polygon area defined by taxonomic experts. Our analyses show significant differences among modelling methods depending on the chosen accuracy measure. Maxent performed the best according to four out of the five accuracy measures, although its accuracy did not differ significantly from that obtained with artificial neural networks. When assessed on per species basis, Maxent was also one of the strongest performing methods, particularly for species sampled from a relatively low number of localities. Overall, our study identified four groups of modelling techniques based on model performance. The top-performing group is composed of Maxent and artificial neural networks, followed closely by the DOMAIN technique. The third group includes GARP, GAM, GLM, and CART, and the fourth best performer is the BIOCLIM technique. Although these results may allow obtaining better distributional predictions for reserve selection, it is necessary to be cautious in their use due to the provisional nature of these simulations.
Key words:
expert opinion, model evaluation, Patagonia, pseudo-absence data, species distribution Modelling

Valid XHTML 1.0 Transitional ¡Valid CSS!